

Paul Carpenter Associates, Inc. A Certified Women-Owned Business Enterprise

7 Columbia Turnpike, Suite 101 Florham Park, NJ 07932 (973) 822-8221

March 22, 2017

Mr. Chris Rutishauser, P.E. Director of Public Works/Village Engineer Village of Ridgewood 131 North Maple Avenue Ridgewood, NJ 07450

Re: Baseline Noise Monitoring Assessment; 460 West Saddle River Road (Block 4704, Lots 9, 10, 11 and 12)

Dear Chris:

Paul Carpenter Associates, Inc. (PCA) was retained by the Village of Ridgewood to perform a baseline noise monitoring study to determine existing noise levels as well as an approximate level of noise attenuation provided by the existing trees located on the project site (460 West Saddle River Road; Block 4704, Lots 9, 10, 11 and 12). Results of the baseline noise monitoring assessment are presented within.

Noise Fundamentals

Certain critical factors affect sound and the way it is perceived by the human ear. Such factors include the acoustical level, frequency and the length of the exposure period. Noise is typically referred to as unwanted sound. In this document, noise and sound will be used interchangeably. Sound or noise levels are measured in units of decibels (dB). Due to the complex manner in which the human ear functions, measurement of different noise sources does not always correspond to relative loudness or annoyances. Therefore, different scales have been developed to furnish guidance in evaluating the importance of different noise sources. The A-weighted scale (unit expressed as dBA) is utilized almost exclusively in noise measurement and prediction assessments since it reflects the frequency range to which the human ear is most sensitive (1,000 to 6,000 Hertz).

The A-weighted sound pressure level (dBA) is applicable for noise levels at one single moment. Table

1 details typical community A-weighted noise levels. Very few noise sources are constant and usually noise intensity fluctuates over time. The most widely used sound level descriptor to describe the time-varying noise level is the L_{eq} . This metric represents an equivalent steady-state sound level, which in a specific period of time, contains the same acoustic energy as the time-varying sound level during that same period. The A-weighted L_{eq} , referred to hereinafter as L_{Aeq} , is commonly used to describe traffic noise levels. Therefore, this metric was used in the measurement and evaluation of baseline noise levels for this assessment.

Table 1
Noise Levels of Common Sources

Sound Source	Sound Pressure Level (dBA)
Air Raid Siren at 50 feet	120
Maximum Levels at Rock Concerts (Rear Seats)	110
On Platform by Passing Subway Train	100
On Sidewalk by Passing Heavy Truck or Bus	90
On Sidewalk by Typical Highway	80
On Sidewalk by Passing Automobiles with Mufflers	70
Typical Urban Area	60-70
Typical Suburban Area	50-60
Quiet Suburban Area at Night	40-50
Typical Rural Area at Night	30-40
Isolated Broadcast Studio	20
Audiometric (Hearing Testing) Booth	10
Threshold of Hearing	0

Sources: CEQR Technical Manual, 2010

 $Cowan, James\ P.\ Handbook\ of\ Environmental\ Acoustics,\ 1994$

Egan, M. David, Architectural Acoustics, 1988.

Factors affecting the transmission of noise and received sound level include distance from the source, frequency of the sound produced, absorptivity or reflectivity of the ground surface, as well as obstructions between the source and receiver location. Noise levels associated with mobile-sources, such as the vehicles traveling along Route 17 and W. Saddle River Road, attenuate (i.e. reduce) at a rate of 3 decibels per doubling of distance. This attenuation rate is based on the geometry of the source (i.e. a line of vehicles) and the source-to-receiver distance and does not include reductions from other atmospheric and environmental factors such as those described above.

Noise is described in a logarithmic scale where doubling the noise source results in a 3 dB increase in sound pressure level. Studies have shown a decrease in 10 dB is perceived by the average listener as a reduction of loudness by one-half, while an increase in 10 dB is discerned as a doubling of loudness.

Under normal circumstances, a 3 dB change is required for the average person to detect a difference

without the use of instruments. A change in 5 dB is considered to be a noticeable change.

Background Noise Monitoring Study

Goals of the background noise monitoring study were to determine existing noise levels as well as an

approximate level of noise attenuation (i.e. noise level reduction) provided by existing vegetative

coverage. Due to the non-uniform shape of the project site, noise level reductions were expected to

vary; therefore, background noise monitoring was performed in three locations along Route 17 (Sites

1, 3 and 5) and in three locations along W. Saddle River Road (Sites 2, 4, and 6) directly east of those

along Route 17. Noise monitoring locations are illustrated in Figure 1.

Continuous, 24-hour background noise level data was collected between February 23, 2017 and March

9, 2017 utilizing six (6) Type 1 precision sound level meters. Equipment calibration certificates are

included within Appendix A. The time-synchronized noise level meters documented instantaneous A-

weighted noise levels, averaged over 10-minute periods, which is expressed as the 10-minute L_{Aeq.}

Noise level meters were set to a 3 dB exchange rate and slow response. Each noise level meter was

housed within a weather-proof case and equipped with rechargeable batteries. The outdoor

microphone kit included a heavy-duty windscreen, which allowed the unit to be left unattended during

most weather conditions. Photos of each monitoring location are included within Appendix B.

Every Monday and Friday during the monitoring period, a field technician performed data downloads,

equipment field calibration to ensure equipment continued to function properly, replaced batteries

and verified wind screens were properly affixed to microphones. Once the data was downloaded, raw

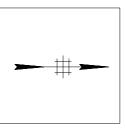
noise levels from each site were graphed for individual 24-hour periods and subsequently filtered

through a three-step process developed by PCA to remove data resulting from the following

conditions:

Abnormal Traffic Patterns. Traffic patterns are abnormal during major holidays; therefore

background noise levels are not representative of typical levels during these periods. No holidays


fell on days for which noise monitoring was conducted. Traffic patterns are also abnormal during

accidents and roadway construction or during periods of general heavy volume thereby causing

traffic congestion. There was a short period on Friday, February 24, 2017 between approximately

9:40 am and 10:20 am during which noise levels decreased noticeably (by approximately 5 dBA)

PROJECT NORTH

LEGEND

Noise Monitoring Location

Noise Monitoring Location Number

Date March 22, 2017

Village of Ridgewood

40 West Saddle River Road Baseline Noise Monitoring Assessment

Figure 1

Noise Monitoring Locations

Drawn by: M. Amabile

Checked by: S.P. Carpenter

Paul Carpenter Associates, Inc.

Page 4

at Sites 1, 3 and 5, which was likely due to lower travel speeds caused by congestion, roadway

construction, or potentially as a result of an accident. Therefore, noise levels documented during

this timeframe were filtered from the data set.

Adverse Meteorological Conditions. Weather conditions play an important role in obtaining

appropriate noise levels; therefore, the background noise level data was filtered based on a

review of meteorological data. Official hourly surface observations were obtained from the

closest National Oceanic and Atmospheric Association (NOAA) weather station (Newark Liberty

International Airport) and cross-referenced with data to identify conditions which exceed noise

monitoring equipment tolerances based on manufacturer specifications. Certain conditions,

including precipitation events, periods of high wind or high relative humidity, invalidate the noise

data. Therefore, noise levels obtained during these types of meteorological events were removed

from the data set. All corresponding meteorological data is included within Appendix C.

Extraneous Noise Sources. The noise level meters were unattended for long periods of time.

Extraneous noise sources such as, but not limited to, police sirens, aircraft fly-overs, and car horns

also contribute to the overall noise environment to a varying degree. Atypical noise peaks which

are non-repetitive and therefore uncharacteristic of the area were subsequently filtered from the

data set. After careful review of the data collected, no atypical noise peaks were identified. The

only extraneous filters necessary corresponded with on-site field technician time periods.

Graphs of filtered noise measurement data documented at each site representing typical background

noise levels are included within Appendix D. Subsequently, each 10-minute L_{Aeq} noise level was

averaged over a 24-hour period to identify average hourly L_{Aeq} noise levels at each site.

Results

Based on documented background noise levels and review of the average hourly L_{Aeq} noise levels for

each site, the peak noise hour was identified to occur weekdays from 7:00 am to 8:00 am. The peak

noise hour was consistent at the locations along Route 17 (Sites 1, 3 and 5) as well as locations along

W. Saddle River Road (Sites 2, 4, and 6), as expected. The peak noise hour was utilized to determine

the approximate level of attenuation provided by vegetation located between Route 17 and W. Saddle

River Road, as this time period should yield the highest level of attenuation provided by the vegetation.

Mr. Chris Rutishauser, P.E. March 22, 2017 Page 6

Since the shape of the site is non-uniform, the width of vegetation between Route 17 and W. Saddle River Road varies greatly from south to north. Noise monitors were strategically placed along the perimeter of the site to form monitoring pairs for more accurate data comparisons. While Site 2 was located directly east of Site 1, Site 3 (along Route 17) was located in between Site 4 and Site 6 (along W. Saddle River Road). Also, Site 5 was located further north along Route 17 and therefore not directly paired with Site 6. Adjustments in the calculations when comparing Site 5 and Site 6 were made accordingly.

To determine the attenuation provided by the existing vegetation located within the project site, the assessment cannot be performed by simply subtracting noise monitoring data along the east site perimeter from the west site perimeter without performing calculations to account for sound propagation over distance. As sound propagates (i.e. travels) over distance, the sound intensity reduces in a certain pattern away from the sound source, ignoring any other atmospheric or environmental effects. The steady stream of vehicles traveling along Route 17 is described as a line source, and as sound waves travel away from this sound source, the sound level reduces at a rate of 3 dB per doubling of distance, as described within. For example, if vehicles traveling along Route 17 resulted in a sound level of 80 dBA at a distance of 25 feet (reference condition), then one would expect the sound level at a distance of 50 feet to be 77 dBA, simply based on the reduction in sound due to the increased distance.

Initially, the received sound levels along the east perimeter monitoring sites (Sites 2, 4 and 6) were calculated using the standard line source propagation equation utilizing distances and documented sound levels from monitoring sites along Route 17. This calculation yielded a level of noise reduction that may be attributed solely to the distance. Assuming atmospheric effects were negligible, the remaining reduction in noise level (i.e. the difference between the total noise level reduction between site pairs and the noise level reduction attributable to distance) was assumed to be the reduction provided by vegetation. Table 2 details the total noise level reduction, the noise level reduction due to distance and the remaining level of reduction attributable to vegetation. As shown in Table 2, the level of reduction due to vegetation varies approximately between 7 dBA at the most southern portion of the project site to 11 dBA at the northern portion of the project site.

Mr. Chris Rutishauser, P.E. March 22, 2017 Page 7

Table 2
Noise Level Reductions (dBA)

Analysis Location	Total Reduction	Distance Reduction	Vegetation Reduction
Between Site 1 and Site 2	11	4	7
Between Site 3 and Site 4	16	7	9
Between Site 5 and Site 6	21	10	11

Source: Paul Carpenter Associates, Inc. 2017.

Utilizing the vegetation reductions detailed in Table 2, noise levels along the eastern perimeter of the project site (Sites 2, 4, and 6) were subsequently predicted for the future development condition in which the existing vegetation would be removed. Table 3 presents 2017 existing measured noise levels in comparison to predicted future development noise levels with tree loss as well as perceived change in noise levels.

Table 3
Peak Noise Levels (dBA)

Noise Monitoring Location No.	2017 Existing	Future Development with Tree Loss	Perceived Change With Tree Loss	
2	70	76	Clearly Noticeable	
4	66	75	Doubling of Sound	
6	63	74	Doubling of Sound	

Source: Paul Carpenter Associates, Inc. 2017.

The Federal Highway Administration (FHWA), through promulgation of the federal traffic noise regulation (23 CFR 772), has established Noise Abatement Criteria (NAC) for evaluating traffic noise impact to noise sensitive land use. The New Jersey Department of Transportation (NJDOT) establishes impact based on approach (i.e. within 1 dBA of the NAC) or exceedance of the NAC. Specifically, the FHWA NAC for residential land use is 67 dBA; therefore, NJDOT considers residences to be impacted by traffic noise when future noise levels with construction of a project are 66 dBA or greater. This value was developed based on several factors, one of which is related to speech interference.

Assuming loss of vegetation within the project site, noise levels were then predicted for the future development condition at residences along the east side of W. Saddle River Road between the on/off-ramp to/from Route 17 and Kenwood Road (seven total residences). The residence on the

Mr. Chris Rutishauser, P.E.

March 22, 2017

Page 8

development parcel is abandoned. Using the FHWA/NJDOT traffic noise impact criterion as a guide to

place existing and future development noise levels into perspective, 2017 existing noise levels

predicted at residences on the east side of W. Saddle River Road, south of Terhune Road (across from

Site 4), would all be predicted at 66 dBA or greater and therefore approach or exceed the FHWA NAC

(four residences). North of Terhune Road at the remaining three residences, existing 2017 noise levels

are predicted to be below 66 dBA and the FHWA NAC. However, with future development of the parcel

at 460 West Saddle River Road (Block 4704, Lots 9, 10, 11 and 12) noise levels at all seven residences

along the east side of W. Saddle River Road between the on/off-ramp to/from Route 17 and Kenwood

Road would exceed the NAC due to the loss of vegetation.

There is no federal or state requirement for the Village of Ridgewood to construct a noise wall in the

event the parcel at 460 West Saddle River Road (Block 4704, Lots 9, 10, 11 and 12) is developed and

all trees are removed. However, the intent of this assessment was to provide information necessary for

the Village of Ridgewood to formulate future decisions regarding the project site.

Respectfully,

Dayo Lowen

Dayna Bowen, Project Manager

APPENDIX A EQUIPMENT CALIBRATION CERTIFICATES

Dear Larson Davis Customer,

Below you will find a check list for the following item(s) received on order: 363648 Model / Serial Number(s): 831/0004053 PRM831/036902 377B02/154240 Please verify all certificates and data upon arrival as per the checked boxes below. The following actions have taken place with your order:

FACTORY CERTIFICATION Certified and recalibrated the above listed item(s). With a calibration cycle of 12 months. Without due date; recalibration period was not provided. Test results included. \times Firmware upgraded to 2.311 New version of software CD included.
 □ Upgrade instructions included. Accessories (i.e. cables, adaptors, power supplies, etc.) were inspected: Settings were restored to same as upon arrival. Data was downloaded and saved as SERVICE AND REPAIRS No faults were found with item(s). No certification was issued. Test results included. Repairs were performed. No certification was issued. Test results included. Neither repair nor certification occurred due to the following: Larson Davis no longer supports repairs on item(s). Item(s) damaged beyond reasonable means of repair. Larson Davis did not manufacture the item(s) and we are unable to perform calibration, certification or repairs. Customer Request. Damaged or unwanted item(s) disposed of at Larson Davis. Item(s) replaced with new product. Item(s) returned "AS IS". We appreciate your business and would hope that in the future we will be able to continue to provide you with the service that you require. Sincerely,

D0001,9006-1(E

LARSON DAVIS — A DIVISION OF PCB PIEZOTRONICS, INC.

3425 Walden Avenue, Depew, New York 14043-2495 USA Phone: 716-926-8243 Fax: 716-926-8215

E-mail: sales@larsondavis.com

www.larsondavis.com

1681 West 820 North, Provo, Utah 84601 USA Phone: 801-375-0177 Fax: 801-375-8864

Larson Davis Service Team

Calibration Certificate

Certificate Number 2016009221

Customer:

Paul Carpenter Associates

23 Vreeland Road

Florham Park, NJ 07932, United States

Model Number

831

Serial Number

0004053

Test Results

Pass

Initial Condition

AS RECEIVED same as shipped

Description

Larson Davis Model 831

Procedure Number Technician

D0001.8384 Ron Harris

Calibration Date

18 Oct 2016

Calibration Due

18 Oct 2017

Temperature

Data reported in dB re 20 µPa.

23.14 °C

± 0.01 °C %RH ± 0.5 %RH

Humidity Static Pressure

86.17 kPa ± 0.03 kPa

Evaluation Method

Tested with:

PRM831, S/N 036902

377B02. S/N 154240

Compliance Standards

Compliant to Manufacturer Specifications and the following standards when combined with

Calibration Certificate from procedure D0001.8378:

IEC 60651:2001 Type 1

ANSI S1.4-2014 Class 1

IEC 60804:2000 Type 1

ANSI S1.4 (R2006) Type 1

ANSI S1.43 (R2007) Type 1

IEC 61252:2002

ANSI S1.11 (R2009) Class 1

IEC 61260:2001 Class 1 IEC 61672:2013 Class 1 ANSI S1.25 (R2007)

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

	Standards Used	d		
Description	Cal Date	Cal Due	Cal Standard	
SRS DS360 Ultra Low Distortion Generator	06/21/2016	06/21/2017	006311	
Hart Scientific 2626-S Humidity/Temperature Sensor	06/17/2016	06/17/2017	006946	
Larson Davis CAL200 Acoustic Calibrator	07/26/2016	07/26/2017	007027	
Larson Davis Model 831	03/01/2016	03/01/2017	007182	
1/2 inch Microphone - P - 0V	03/07/2016	03/07/2017	007185	
Larson Davis CAL291 Residual Intensity Calibrator	09/22/2016	09/22/2017	007287	

Acoustic Calibration

Measured according to IEC 61672-3:2013 10 and ANSI S1.4-2014 Part 3: 10

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
1000 Hz	114.00	113.80	114.20	0.14	Pass

As Received Level: 114.55 Adjusted Level: 114.00

-- End of measurement results--

Acoustic Signal Tests, C-weighting

Measured according to IEC 61672-3:2013 12 and ANSI S1.4-2014 Part 3: 12 using a comparison coupler with Unit Under Test

(UUT) and reference SLM using S-time-weighted sound level

Frequency [Hz]	Test Result [dB]	Expected [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
125	-0.20	-0.20	-1.20	0.80	0.21	Pass
1000	0.18	0.00	-0.70	0.70	0.21	Pass
8000	-2.19	-3.00	-5.50	-1.50	0.21	Pass

⁻⁻ End of measurement results--

Self-generated Noise

Measured according to IEC 61672-3:2013 11.1 and ANSI S1.4-2014 Part 3: 11.1

Measurement Test Result [dB]

Low Range, 20 dB gain

64.40

- End of measurement results--

-- End of Report--

Signatory: Ron Harris

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

10/18/2016 7:51:52AM

Calibration Certificate

Certificate Number 2016009216

Customer:

Paul Carpenter Associates

23 Vreeland Road

Florham Park, NJ 07932, United States

Model Number

831

Serial Number

0004053

Test Results

Pass

Initial Condition

AS RECEIVED same as shipped

Description

Larson Davis Model 831

Procedure Number

D0001.8378

Technician

Ron Harris

Calibration Date Calibration Due

17 Oct 2016

17 Oct 2017

Temperature

23.87 °C

± 0.01 °C

Humidity

49.5

%RH ± 0.5 %RH

Static Pressure

86.04 kPa

± 0.03 kPa

Evaluation Method

Tested electrically using PRM831 S/N 036902 and a 12.0 pF capacitor to simulate microphone capacitance. Data reported in dB re 20 µPa assuming a microphone sensitivity of 50.0 mV/Pa.

Compliance Standards

Compliant to Manufacturer Specifications and the following standards when combined with

Calibration Certificate from procedure D0001.8384:

IEC 60651:2001 Type 1

ANSI S1.4-2014 Class 1 ANSI S1.4 (R2006) Type 1

IEC 60804:2000 Type 1 IEC 61252:2002

ANSI S1.11 (R2009) Class 1

IEC 61260:2001 Class 1

ANSI S1.25 (R2007)

IEC 61672:2013 Class 1

ANSI S1.43 (R2007) Type 1

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001;2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

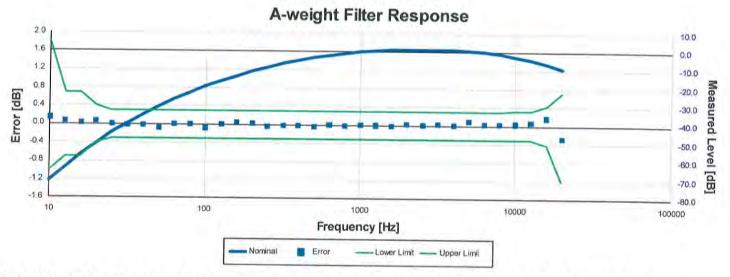
St	and	arc	S L	sed

Description Hart Scientific 2626-S Humidity/Temperature Sensor SRS DS360 Ultra Low Distortion Generator

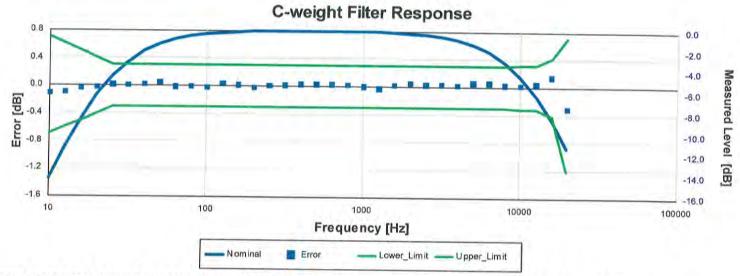
Cal Date 06/17/2016

Cal Due 06/17/2017 Cal Standard 006946

10/14/2016


10/14/2017

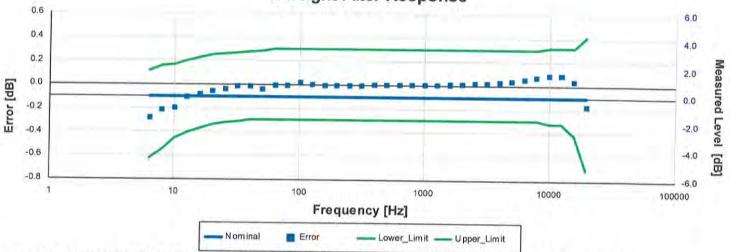
007167



Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

requency [Hz]	Test Result [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
10.00	-70.25	0.15	-1.00	1.80	0.09	Pass
12.59	-63.33	0.07	-0.70	0.70	0.09	Pass
15.85	-56.68	0.02	-0.70	0.70	0.09	Pass
19.95	-50,44	0.06	-0.40	0.40	0.09	Pass
25.12	-44.69	0.01	-0.30	0.30	0.09	Pass
31.62	-39.42	-0.02	-0.30	0.30	0.09	Pass
39.81	-34.62	-0.02	-0.30	0.30	0.09	Pass
50.12	-30.27	-0.07	-0.30	0.30	0.09	Pass
63.10	-26.19	0.01	-0.30	0.30	0.09	Pass
79.43	-22.50	0.00	-0.30	0.30	0.09	Pass
100.00	-19.17	-0.07	-0.30	0.30	0.09	Pass
125.89	-16.10	0.00	-0.30	0.30	0.09	Pass
158.49	-13.35	0.05	-0.30	0.30	0.09	Pass
199.53	-10.88	0.02	-0.30	0.30	0.09	Pass
251.19	-8.63	-0.03	-0.30	0.30	0.09	Pass
316.23	-6.62	-0.02	-0.30	0.30	0.09	Pass
398.11	-4.81	-0.01	-0.30	0.30	0.09	Pass
501.19	-3.23	-0.03	-0.30	0.30	0.09	Pass
630.96	-1.90	0.00	-0.30	0.30	0.09	Pass
794.33	-0.82	-0.02	-0.30	0.30	0.09	Pass
1,000.00	0.00	0.00	-0.30	0.30	0.09	Pass
1,258.93	0.60	0.00	-0.30	0.30	0.09	Pass
1,584.89	0.99	-0.01	-0.30	0.30	0.09	Pass
1,995.26	1.22	0.02	-0.30	0.30	0.09	Pass
2,511.89	1.30	0.00	-0.30	0.30	0.09	Pass
3,162.28	1.23	0.03	-0.30	0.30	0.09	Pass
3,981.07	1.01	0.01	-0.30	0.30	0.09	Pass
5,011.87	0.60	0.10	-0.30	0.30	0.09	Pass
6,309.57	-0.07	0.03	-0.30	0.30	0.09	Pass
7,943.28	-1.07	0.03	-0.30	0.30	0.09	Pass
10,000.00	-2.46	0.04	-0.32	0.32	0.09	Pass
12,589.25	-4.24	0.06	-0.32	0.32	0.09	Pass
15,848.93	-6.43	0.17	-0.42	0.42	0.09	Pass
19,952.62	-9.58	-0.28	-1.21	0.71	0.09	Pass

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5


		Lower limit [dB]	Upper limit [dB]	Uncertainty [dB]	Result
-14.41	-0.11	-0.70	0.70	0.09	Pass
-11.30	-0.10	-0.60	0.60	0.09	Pass
-8.54	-0.04	-0.50			Pass
	-0.03	-0.40	0.40		Pass
-4.39	0.01	-0.30			Pass
-2.99	0.01	-0.30			Pass
-1.98	0.02	-0.30			Pass
-1.25	0.05	-0.30			Pass
-0.81	-0.01				Pass
-0.51	-0.01				Pass
-0.33	-0.03				Pass
-0.17	0.03				Pass
-0.09	0.01				Pass
-0.03	-0.03				Pass
0.00	0.00				Pass
0.01	0.01				Pass
0.03	0.03				Pass
0.03	0.03				Pass
0.03	0.03				Pass
0.02	0.02				Pass
0.00	0.00				Pass
-0.03	-0.03				Pass
-0.07	0.03	-0.30			Pass
-0.15	0.05				Pass
-0.27	0.03	-0.30			Pass
-0.47	0.03	-0.30			Pass
-0.78	0.02	-0.30			Pass
-1.24	0.06				Pass
-1.94	0.06				Pass
-2.97	0.03				Pass
-4.37	0.03				Pass
-6.16	0.04				Pass
-8.36	0.14				Pass
-11.51	-0.31				Pass
	-8.54 -6.23 -4.39 -2.99 -1.98 -1.25 -0.81 -0.51 -0.33 -0.17 -0.09 -0.03 0.00 0.01 0.03 0.03 0.03 0.03 0.02 0.00 -0.03 -0.07 -0.15 -0.27 -0.47 -0.78 -1.24 -1.94 -2.97 -4.37 -6.16 -8.36	-8.54	-8.54	-8.54	-8.54

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

requency [Hz]	Test Result [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
6.31	-0.29	-0.29	-0.63	0.12	0.09	Pass
7.94	-0.22	-0.22	-0.55	0.16	0.09	Pass
10.00	-0.20	-0.20	-0.46	0.17	0.09	Pass
12.59	-0.11	-0,11	-0.41	0.20	0.09	Pass
15.85	-0.08	-0.08	-0.37	0.23	0.09	Pass
19.95	-0.06	-0.06	-0.34	0.25	0.09	Pass
25.12	-0.04	-0.04	-0.32	0.26	0.09	Pass
31.62	-0.02	-0.02	-0.31	0.27	0.09	Pass
39.81	-0.02	-0.02	-0.30	0.28	0.09	Pass
50.12	-0.04	-0.04	-0.30	0.29	0.09	Pass
63.10	-0.01	-0.01	-0.30	0.30	0.09	Pass
79.43	-0.01	-0.01	-0.30	0.30	0.09	Pass
100.00	0.02	0.02	-0.30	0.30	0.09	Pass
125.89	0.00	0.00	-0.30	0.30	0.09	Pass
158.49	0.00	0.00	-0.30	0.30	0.09	Pass
199.53	-0.01	-0.01	-0.30	0.30	0.09	Pass
251.19	-0.01	-0.01	-0.30	0.30	0.09	Pass
316.23	0.00	0.00	-0.30	0.30	0.09	Pass
398.11	0.00	0.00	-0.30	0.30	0.09	Pass
501.19	0.00	0.00	-0.30	0.30	0.09	Pass
630.96	0.00	0.00	-0.30	0.30	0.09	Pass
794.33	0.00	0.00	-0.30	0.30	0.09	Pass
1,000.00	0.00	0.00	-0.30	0.30	0.09	Pass
1,258.93	0.00	0.00	-0.30	0.30	0.09	Pass
1,584.89	0.01	0.01	-0.30	0.30	0.09	
1,995.26	0.01	0.01	-0.30	0.30	0.09	Pass Pass
2,511.89	0.02	0.02	-0.30	0.30	0.09	
3,162.28	0.02	0.02	-0.30	0.30	0.09	Pass
3,981.07	0.03	0.03	-0.30	0.30		Pass
5,011.87	0.04	0.04	-0.30	0.30	0.09	Pass
6,309.57	0.05	0.05	-0.30	0.30	0.09	Pass
7,943.28	0.07	0.07	-0.30	0.30	0.09	Pass
10,000.00	0.09	0.09	-0.32	0.32	0.09	Pass
12,589.25	0.09	0.09	-0.32	0.32	0.09	Pass
15,848.93	0.04	0.04	-0.42	0.32	0.09	Pass
19,952.62	-0.17	-0.17	-0.71	0.32	0.09	Pass

-- End of measurement results--

High Level Stability

Electrical signal test of high level stability performed according to IEC 61672-3:2013 21 and ANSI S1.4-2014 Part 3: 21 for compliance to IEC 61672-1:2013 5.15 and ANSI S1.4-2014 Part 1: 5.15

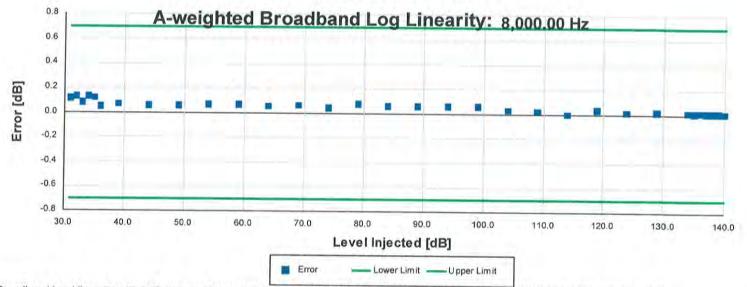
Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
High Level Stability	138.60	138.50	138.70	0.09	Pass

Long-Term Stability

Electrical signal test of long term stability performed according to IEC 61672-3:2013 15 and ANSI S1.4-2014 Part 3: 15 for compliance to ISC 61672-1:2013 5.14 and ANSI S1.4-2014 Part 1: 5.14

Test Duration [min]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
33	113.56	113.46	113.66	0.09	Pass
	End	d of measurement res	ults	1.5105	11.525

1 kHz Reference Levels

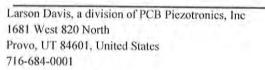

Frequency weightings and time weightings at 1 kHz performed according to IEC 61672-3:2013 14 and ANSI S1.4-2014 Part 3: 14 for compliance to IEC 61672-1:2013 5.5.9 and 5.8.3 and ANSI S1.4-2014 Part 1: 5.5.9 and 5.8.3

Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
113.56	113.36	113.76	0.09	Pass
113.55	113.36	113.76	0.09	Pass
113.56	113.46	113.66	0.09	Pass
113.56	113.46	113.66	0.09	Pass
	113.56 113.55 113.56	113.56 113.36 113.55 113.36 113.56 113.46	113.56 113.36 113.76 113.55 113.36 113.76 113.56 113.46 113.66	113.56 113.36 113.76 0.09 113.56 113.46 113.66 0.09

Broadband level linearity with 0 dB gain performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
31.00	0.12	-0.70	0.70	0.09	Pass
32.00	0.14	-0.70	0.70	0.09	Pass
33.00	0.08	-0.70	0.70	0.09	Pass
34.00	0.13	-0.70	0.70	0.09	Pass
35.00	0.12	-0.70	0.70	0.09	Pass
36.00	0.05	-0.70	0.70	0.09	Pass
39.00	0.07	-0.70	0.70	0.09	Pass
44.00	0.06	-0.70	0.70	0.09	Pass
49.00	0.06	-0.70	0.70	0.09	Pass
54.00	0.07	-0.70	0.70	0.09	Pass
59.00	0.07	-0.70	0.70	0.09	Pass
64.00	0.06	-0.70	0.70	0.09	Pass
69.00	0.06	-0.70	0.70	0.09	Pass
74.00	0.04	-0.70	0.70	0.09	Pass
79.00	0.08	-0.70	0.70	0.09	Pass
84.00	0.06	-0.70	0.70	0.09	Pass
89.00	0.06	-0.70	0.70	0.09	Pass
94.00	0.06	-0.70	0.70	0.09	Pass
99.00	0.06	-0.70	0.70	0.09	Pass
104.00	0.03	-0.70	0.70	0.09	Pass
109.00	0.02	-0.70	0.70	0.09	Pass
114.00	0.00	-0.70	0.70	0.09	Pass
119.00	0.03	-0.70	0.70	0.09	Pass
124.00	0.02	-0.70	0.70	0.09	Pass
129.00	0.02	-0.70	0.70	0.09	Pass
134.00	0.02	-0.70	0.70	0.09	Pass
135.00	0.01	-0.70	0.70	0.09	Pass
136.00	0.02	-0.70	0.70	0.09	
137.00	0.01	-0.70	0.70	0.09	Pass Pass
138.00	0.01	-0.70	0.70	0.09	
139.00	0.01	-0.70	0.70		Pass
140.00	0.01	-0.70	0.70	0.09 0.09	Pass Pass

Slow Detector


Toneburst response performed according to IEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

Di	uration [ms]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
	1,000	-2.09	-2.49	-1.49	0.09	Pass
	500	-4.18	-4.55	-3.55	0.09	Pass
	200	-7.56	-7,92	-6.92	0.09	Pass
	100	-10.36	-11.22	-9.22	0.09	Pass
	50	-13.26	-14.12	-12.12	0.09	Pass
	20	-17.20	-18.53	-16.03	0.09	Pass
	10	-20.18	-22.02	-19.02	0.09	Pass
	5	-23.17	-25.52	-22.02	0.09	Pass
	2	-27.17	-29.99	-25.99	0.09	Pass

Fast Detector

Toneburst response performed according to IEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

Result	Expanded Uncertainty [dB]	Upper limit [dB]	Lower limit [dB]	Test Result [dB]	Duration [ms]	Amplitude [dB]
Pass	0.09	0.50	-0.50	-0.03	1,000.00	137.00
Pass	0.09	0.42	-0.58	-0.11	500.00	
Pass	0.09	-0.48	-1.48	-1.04	200.00	
Pass	0.56	-1.59	-3.59	-2.70	100.00	
Pass	0.09	-3.82	-5.82	-5.01	50.00	
Pass	0.09	-7,30	-9.30	-8.62	20.00	
Pass	0.09	-10.14	-12.14	-11.46	10.00	
Pass	0.09	-13.07	-15.07	-14.20	5.00	
Pass	0.09	-16.99	-19.49	-18.20	2.00	
Pass	0.09	-19.99	-22.99	-21.30	1.00	
Pass	0.09	-22.99	-26.49	-24.45	0.50	
Pass	0.09	-25.99	-29.99	-27.40	0.25	

Peak C-weight

C-weighted peak sound level performed according to IEC 61672-3:2013 19 and ANSI S1.4-2014 Part 3: 19 for compliance to IEC 61672-1:2013 5.13 and ANSI S1.4-2014 Part 1: 5.13

Level [dB]	Frequency [Hz]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
135.00	31.50	3.19	0.50	4.50	0.09	Pass
135.00	500.00	3.55	2.50	4.50	0.09	Pass
135.00	8,000.00	2.75	1.40	5.40	0.10	Pass
135.00, Negative	500.00	2.16	1.40	3.40	0.09	Pass
135.00, Positive	500.00	2.17	1.40	3.40	0.09	Pass

Peak Z-weight

Z-weighted peak sound level performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Amplitude [dB]	Duration[µs]	Test	Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
136.00	100	Negative Pulse	135.85	133.50	137.50	0.09	Pass
	100	Positive Pulse	135.86	133.51	137.51	0.09	Pass
126.00	100	Negative Pulse	125.85	123.51	127.51	0.09	Pass
	100	Positive Pulse	125.86	123.51	127.51	0.09	Pass
116.00	100	Negative Pulse	115.84	113.50	117.50	0.09	Pass
	100	Positive Pulse	115.84	113.49	117.49	0.09	Pass
106.00	100	Negative Pulse	105.85	103.49	107,49	0.09	Pass
	100	Positive Pulse	105.87	103.52	107.52	0.09	Pass
			- End of mea	surement results		17777	1,75

Overload Detector

Overload indication performed according to IEC 61672-3:2013 20 and ANSI S1.4-2014 Part 3: 20 for compliance to IEC 61672-1:2013 5.13, IEC 60804:2000 9.3.5, IEC 61252:2002 11, ANSI S1.4 (R2006) 5.8, and ANSI S1.4-2014 Part 1: 5.13, ANSI S1.25 (R2007) 7.6, ANSI S1.43 (R2007) 7

Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty (dB)	Result
141.00	140.00	142.00	and the second second second	Pass
140.90				Pass
140.90	139.50	947.57	4262	Pass
	141.00 140.90	141.00 140.00 140.90 140.00	141.00 140.00 142.00 140.90 140.00 142.00	141.00 140.00 142.00 0.09 140.00 140.00 142.00 0.09

Rise Time

Peak rise time performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

mplitude [dB]	Duration [μs]		Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
137.00	40	Negative Pulse	136.02	134.50	136.50	0.09	Pass
		Positive Pulse	136.02	134.51	136,51	0.09	Pass
	30	Negative Pulse	135.08	134.50	136.50	0.09	Pass
		Positive Pulse	135.11	134.51	136.51	0.09	Pass

Positive Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
138.00	3	OVLD	± 0.50	0.09	Pass
	5	OVLD	± 1.00	0.09	Pass
	10	OVLD	± 1.50	0.09	Pass
128.00	3	-0.12	± 0.50	0.10	Pass
	5	-0.13	± 1.00	0.09	Pass
	10	OVLD	± 1.50	0.09	Pass
118.00	3	-0.13	± 0.50	0.10	Pass
	5	-0.13	± 1.00	0.09	Pass
A. S. S. S.	10	0.01	± 1.50	0.09	Pass
108.00	3	-0.12	± 0.50	0.13	Pass
	5	-0.11	± 1.00	0.09	Pass
	10	0.00	± 1.50	0.09	Pass
		End of n	easurement results		1,7177

Negative Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI \$1.4:1983 (R2006) 8.4.2

Amplitude [dB]	Crest Factor	The same to take	1 4 4 1 1 1 1 1 1 1 1	Zione di La constitutione della	
Ampittude [db]	Crest Pactor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
138.00	3	OVLD	± 0.50	0.09	Pass
	5	OVLD	± 1.00	0.09	Pass
1.000.00	10	OVLD	± 1.50	0.09	Pass
128.00	3	-0.12	± 0.50	0.09	Pass
	5	-0.11	± 1.00	0.09	Pass
200	10	OVLD	± 1.50	0.09	Pass
118.00	3	-0.13	± 0.50	0.09	Pass
	5	-0.11	± 1.00	0.09	Pass
	10	-0.10	± 1.50	0.09	Pass
108.00	3	-0.13	± 0.50	0.09	Pass
	5	-0.13	± 1.00	0.09	Pass
	10	0.00	± 1.50	0.09	Pass
		End of	measurement results-		, 400

Tone Burst

2kHz tone burst tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Tone burst response measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
138.00	3	OVLD	± 0.50	0.09	Pass
	5	OVLD	± 1.00	0.09	Pass
128.00	. 3	-0.07	± 0.50	0.12	Pass
11212	5	-0.01	± 1.00	0.09	Pass
118.00	3	-0.07	± 0.50	0.09	Pass
	5	-0.01	± 1.00	0.09	Pass
108.00	3	-0.07	± 0.50	0.09	Pass
	5	-0.06	± 1.00	0.09	Pass
		- End of m	easurement results-		

Impulse Detector - Repeat

Impulse Detector measured according to IEC 60651:2001 9.4.3 and ANSI S1.4:1983 (R2006) 8.4.3

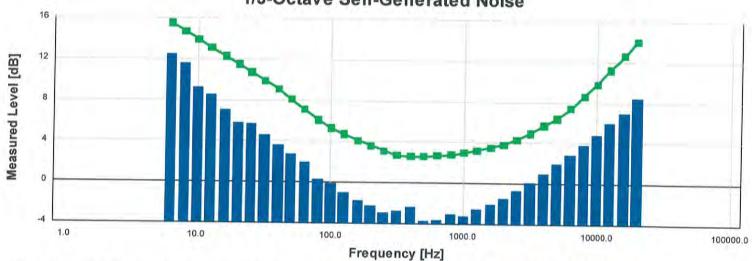
Amplitude [dB]	Repitition Rate [Hz]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
140	100.00	-2.77	-3.71	-1.71	0.09	Pass
	20.00	-6.42	-9.57	-5.57	0.09	Pass
0.00	2.00	-8.83	-10.76	-6.76	0.09	Pass
135	2.00	126.60	125.74	127.74	0.11	Pass

Impulse Detector - Single

Impulse Detector measured according to IEC 60651:2001 9.4.3 and ANSI S1.4:1983 (R2006) 8.4.3

Amplitude [dB]	Duration [ms]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
140	20.00	-3.72	-5.11	-2.11	0.09	Pass
	5.00	-8.76	-10.76	-6.76	0.10	Pass
130	2.00	-12.67	-14.55	-10.55	0.11	Pass
	2.00	117.86	116.90	118.90	0.11	Pass

Gain


Gain measured according to IEC 61672-3:2013 17.3 and 17.4 and ANSI S1.4-2014 Part 3: 17.3 and 17.4

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
20 dB Gain	93.59	93.49	93.69	0.09	Door
Normal Range	93.59	93.20	94.80	131761	Pass
Low Range	5,511.70		0.777575	0.09	Pass
	93.59	93.49	93.69	0.09	Pass
20 dB Gain, Linearity	24.20	23.89	25.29	0.12	Pass

The SLM is set to low range and 0 dB gain. 1/3-Octave self-generated noise measured according to IEC 61672-3:2013 11.2 and ANSI

Frequency [Hz]	Test Result [dB]	Upper limit [dB]	Result
6.30	12.43	15.50	Pass
8.00	11.55	14.70	Pass
10.00	9.25	13.90	Pass
12.50	8.53	13.10	Pass
16.00	7.06	12.30	Pass
20.00	5.77	11.50	Pass
25.00	5.70	10.70	
31.50	4.64	9.90	Pass
40.00	3.64	9.10	Pass
50.00	2.72	8.10	Pass
63.00	1.98	7.10	Pass
80.00	0.30	6.10	Pass
100.00	-0.06	5.30	Pass
125.00	-0.93	4.70	Pass
160.00	-1.73	4.10	Pass
200.00	-2.28	3.60	Pass
250.00	-2.96	3.10	Pass
315.00	-2.78	2.70	Pass
400.00	-2.37	2.60	Pass
500.00	-3.75	2.60	Pass
630.00	-3.66	2.70	Pass
800.00	-3.02	2.80	Pass
1,000.00	-3.22	3.00	Pass
1,250.00	-2.51	3.20	Pass
1,600.00	-2.06	3.50	Pass
2,000.00	-1.48	3.80	Pass
2,500.00	-0.72	4.30	Pass
3,150.00	0.08	4.90	Pass
4,000.00	0.99	5.70	Pass
5,000.00	1.94	6.40	Pass
6,300.00	2.82	7.40	Pass
8,000.00	3.84	8.60	Pass
10,000.00	4.81	9.80	Pass
12,500.00	5.99	11.20	Pass
16,000.00	6.98	12.60	Pass Pass

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

requency [Hz]	Test Result [dB]	Upper limit [dB]	Result
20,000.00	8.49	14.00	Pass

-- End of measurement results--

Broadband Noise Floor

Self-generated noise measured according to IEC 61672-3:2013 11.2 and ANSI S1.4-2014 Part 3: 11.2

Measurement	Test Result [dB]	Upper limit [dB]	Result
A-weight Noise Floor	12.86	15.00	Pass
C-weight Noise Floor	14.65	17.30	Pass
Z-weight Noise Floor	23.38	24.50	Pass

-- End of measurement results--

Total Harmonic Distortion

Measured using 1/3-Octave filters

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
10 Hz Signal	137.54	137.20	138.80	0.09	Pass
THD	-71.67		-60.00	0.01	Pass
ΓHD+N	-65.21		-60.00	0.01	Pass

-- End of Report--

Signatory: Ron Harris

Calibration Certificate

Certificate Number 2016009215

Customer:

Paul Carpenter Associates

23 Vreeland Road

Florham Park, NJ 07932, United States

Model Number PRM831 036902 Serial Number Test Results Pass Initial Condition AS RECEIVED same as shipped Description

Type 1

Larson Davis 1/2" Preamplifier for Model 831

Procedure Number D0001.8383 Technician Ron Harris Calibration Date 17 Oct 2016 Calibration Due 17 Oct 2017

Temperature 23.74 °C ± 0.01 °C Humidity 50.1 %RH ± 0.5 %RH 86.03 kPa Static Pressure ± 0.03 kPa

Evaluation Method Tested electrically using a 12.0 pF capacitor to simulate microphone capacitance.

Data reported in dB re 20 µPa assuming a microphone sensitivity of 50.0 mV/Pa.

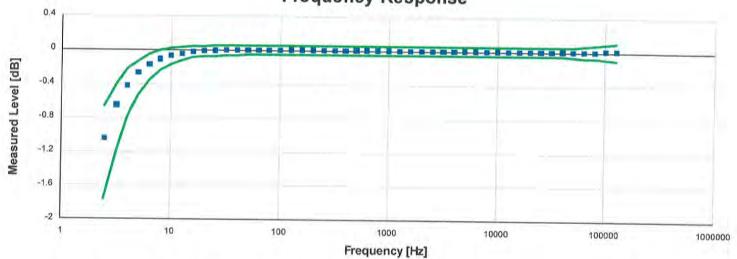
Compliance Standards Compliant to Manufacturer Specifications

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.


This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report. Carried M. Fr.

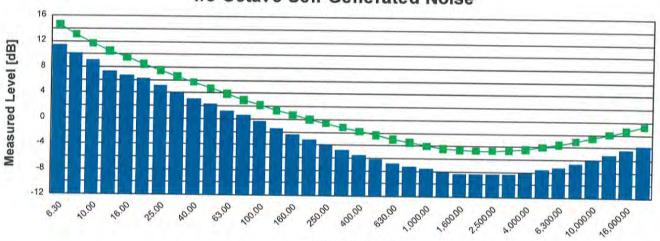
	Standards Use	1	
Description	Cal Date	Cal Due	Cal Standard
Sound Level Meter / Real Time Analyzer	03/08/2016	03/08/2017	003003
Hart Scientific 2626-S Humidity/Temperature Sensor	06/17/2016	06/17/2017	006946
Agilent 34401A DMM	06/07/2016	06/07/2017	007165
SRS DS360 Ultra Low Distortion Generator	10/14/2016	10/14/2017	007167

Frequency response electrically tested at 120.0 dB μV

Frequency [Hz]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
2.50	-1.05	-1.76	-0.66	0.07	Pass
3.20	-0.65	-1.20	-0.40	0.08	Pass
4.00	-0.42	-0.81	-0.23	0.08	Pass
5.00	-0.27	-0.53	-0.13	0.07	Pass
6.30	-0.17	-0.36	-0.05	0.07	Pass
7.90	-0.11	-0.24	-0.01	0.07	Pass
10.00	-0.07	-0.17	0.03	0.06	Pass
12.60	-0.04	-0.13	0.04	0.06	Pass
15.80	-0.02	-0.09	0.04	0.06	Pass
20.00	-0.01	-0.08	0.05	0.06	Pass
25.10	0.00	-0.07	0.05	0.06	Pass
31.60	0.00	-0.07	0.05	0.06	Pass
39.80	0.00	-0.06	0.05	0.06	Pass
50.10	0.00	-0.06	0.05	0.06	Pass
63.10	0.01	-0.05	0.05	0.06	Pass
79.40	0.00	-0.05	0.05	0.06	Pass
100.00	0.00	-0.05	0.05	0.06	Pass
125.90	0.01	-0.05	0.05	0.06	Pass
158.50	0.01	-0.05	0.05	0.06	Pass
199.50	0.01	-0.05	0.05	0.06	Pass
251.20	0.01	-0.05	0.05	0.06	Pass
316.20	0.00	-0.05	0.05	0.06	Pass
398.10	0.01	-0.05	0.05	0.06	Pass
501.20	0.01	-0.05	0.05	0.06	Pass
631.00	0.01	-0.05	0.05	0.06	Pass
794.30	0.01	-0.05	0.05	0.06	Pass
1,000.00	0.01	-0.05	0.05	0.06	Pass
1,258.90	0.00	-0.05	0.05	0.06	Pass
1,584.90	0.00	-0.05	0.05	0.06	Pass
1,995.30	0.00	-0.05	0.05	0.06	Pass
2,511.90	0.01	-0.05	0.05	0.06	Pass
3,162.30	0.01	-0.05	0.05	0.06	Pass

requency [Hz]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
3,981.10	0.01	-0.05	0.05	0.06	Pass
5,011.90	0.01	-0.05	0.05	0.06	Pass
6,309.60	0.01	-0.05	0.05	0.06	Pass
7,943.30	0.01	-0.05	0.05	0.06	Pass
10,000.00	0.01	-0.05	0.05	0.06	Pass
12,589.30	0.00	-0.05	0.05	0.06	Pass
15,848.90	0.00	-0.05	0.05	0.06	Pass
19,952.60	0.00	-0.05	0.05	0.06	Pass
25,118.90	0.01	-0.05	0.05	0.06	Pass
31,622.80	0.01	-0.05	0.05	0.06	Pass
39,810.70	0.01	-0.05	0.05	0.06	Pass
50,118.70	0.00	-0.06	0.06	0.07	Pass
63,095.70	0.01	-0.07	0.07	0.07	Pass
79,432.80	0.01	-0.08	0.08	0.07	Pass
100,000.00	0.01	-0.09	0.09	0.07	Pass
125,892.50	0.02	-0.10	0.10	0.24	Pass

DC Bias and 1kHz Reference Measurements


Measurement	Test Result [V]	Lower limit [V]	Upper limit [V]	Expanded Uncertainty	Result
DC Voltage	17.85	15.50	18.50	0.19	Pass
1000 Hz Reference	0.96	0.92	0.98	0.03	Pass

⁻ End of measurement results--

1/3-Octave Self-Generated Noise

Frequency [Hz]

Frequency [Hz]	Test Result [dB]	Upper limit [dB]	Result
6.30	11.40	14.60	Pass
8.00	10.20	13.10	Pass
10.00	9.10	11.70	
12.50	7.40	10.50	Pass
16.00	6.80	9.50	Pass
20.00	6.20	8.50	Pass
25.00	5.20	7.50	Pass
31.50	4.10	6.60	Pass
40.00	3.20	5.70	Pass
50.00	2.40	4.80	Pass
63.00	1.30	3.90	Pass
80.00	0.60	3.00	Pass
100.00	-0.40	2.20	Pass
125.00	-1.40	1.40	Pass
160.00	-2.30	0.70	Pass
200.00	-3.20	0.00	Pass
250.00	-3.90	-0.60	Pass
315.00	-4.80	-1.20	Pass
400.00	-5.60	-1.80	Pass
500.00	-6.20	-2.40	Pass
630.00	-6.80	-3.00	Pass
800.00	-7.30	-3.50	Pass
1,000.00	-7.60	-4.00	Pass
1,250.00	-8.00	-4.40	Pass
1,600.00	-8.30	-4.60	Pass
2,000.00	-8.40	-4.70	Pass
2,500.00	-8.40	-4.70	Pass
3,150.00	-8.30	-4.60	Pass
4,000.00	-8.00	-4.40	Pass
5,000.00	-7.60	-4.00	Pass
6,300.00	-7.20	-3.60	Pass
8,000.00	-6.70	-3.10	Pass
10,000.00	-6.00	-3.10	Pass
12,500.00	-5.20		Pass
16,000.00	-4.40	-2.00	Pass
20,000.00	-3.80	-1.40 -0.70	Pass Pass

Self-generated Noise

Bandwidth	Test Result [dB]	Upper limit [dB]	Result
A-weighted	4.70	8.00	Pass
Broadband	12.90	15.50	Pass

Signatory: Ron Harris

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

10/17/2016 5:13:02PM

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.36143

Instrument:

Sound Level Meter

Model:

NL31

Manufacturer:

Rion

Serial number: Tested with:

00583307

Microphone UC53A s/n 319760

Preamplifier NH21 s/n 27537

Type (class):

Tel/Fax:

Customer:

Paul Carpenter Associates, Inc. 973-822-8221 x21 / -833-9221

Date Calibrated:5/3/2016 Cal Due: 5/3/2017

Status:

Received Sent X X

In tolerance:

Out of tolerance:

See comments:

Contains non-accredited tests: __Yes X No

Calibration service: __ Basic X Standard

Address:

23 Vreeland Road, Suite 204

Florham Park, NJ 07932

Tested in accordance with the following procedures and standards:

Calibration of Sound Level Meters, Scantek Inc., Rev. 6/26/2015 SLM & Dosimeters - Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Verlanders van Agarban.	Description	chi	Cal Data	Traceability evidence	Cal. Due	
Instrument - Manufacturer		S/N	Cal. Date	Cal. Lab / Accreditation		
483B-Norsonic	SME Cal Unit	31061	Jul 20, 2015	Scantek, Inc./ NVLAP	Jul 20, 2016	
DS-360-SRS	Function Generator	88077	Sep 9, 2014	ACR Env./ A2LA	Sep 9, 2016	
34401A-Agilent Technologies	Digital Voltmeter	MY47011118	Sep 24, 2015	ACR Env./ A2LA	Sep 24, 2016	
HM30-Thommen	Meteo Station	1040170/39633	Oct 23, 2015	ACR Env./ A2LA	Oct 23, 2016	
PC Program 1019 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	-	
1251-Norsonic	Calibrator	30878	Nov 10, 2015	Scantek, Inc./ NVLAP	Nov 10, 2016	

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
24.1	99.37	52.2

Calibrated by:	Jeremy Gotwalt	Authorized signatory:	Valentin Buzduga		
Signature	mus (4) extents	Signature	10		
Date	5/3/16	Date	5/04/2016		

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2016\RIONL31_00583307_M1.doc

Page 1 of 2

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB]
INDICATION AT THE CALIBRATION CHECK FREQUENCY - IEC61672-3 ED.2 CLAUSE 10	Passed	0.15
SELF-GENERATED NOISE - IEC 61672-3 ED.2 CLAUSE 11	Passed	0.3
FREQUENCY WEIGHTINGS: A NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.2
FREQUENCY WEIGHTINGS: C NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.2
FREQUENCY WEIGHTINGS: Z NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.2
FREQUENCY AND TIME WEIGHTINGS AT 1 KHZ IEC 61672-3 ED.2.0 CLAUSE 14	Passed	0.2
LEVEL LINEARITY ON THE REFERENCE LEVEL RANGE - IEC 61672-3 ED.2 CLAUSE 16	Passed	0.25
LEVEL LINEARITY INCLUDING THE LEVEL RANGE CONTROL - IEC 61672-3 ED.2.0 CLAUSE 17	Passed	0.25
TONEBURST RESPONSE - IEC 61672-3 ED.2.0 CLAUSE 18	Passed	0.3
PEAK C SOUND LEVEL - IEC 61672-3 ED.2.0 CLAUSE 19	Passed	0.35
OVERLOAD INDICATION - IEC 61672-3 ED.2.0 CLAUSE 20	Passed	0.25
HIGH LEVEL STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 21	Passed	0.1
LONG TERM STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 15	Passed	0.1
COMBINED ELECTRICAL AND ACOUSTICAL TEST - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	See test report

The results of this calibration apply only to the instrument type with serial number identified in this report.

Comments: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3, for the environmental conditions under which the tests were performed. However, No general statement or conclusion can be made about conformance of the sound level meter to the full requirements of IEC 61672-1 because evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conforms to the requirements of IEC 61672-1:2002, and because the periodic tests of IEC 61672-3 cover only a limited subset of the specifications in IEC 61672-1.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger. Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

Microphone:	Rion UC53A s/n 319760 for acoustical test	
Preamplifier:	Rion NH21 s/n 27537 for all tests	
Other: line ada	aptor ADP005 (18pF) for electrical tests and 1448 (18pF) for noise test	
Accompanying	g acoustical calibrator: none	
Windscreen:	none	

Measured Data: in Test Report # 36143 of eight pages.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Ph/Fax: 410-290-7726/ -9167

callab@scantekinc.com

Parameters are certified at actual environmental conditions.

The tests marked with (*) are not covered by the current NVLAP accreditation.

Summary of Test Report No.:36143

Rion Type: NL31 Serial no: 00583307

Customer:

Paul Carpenter Associates, Inc.

Address:

23 Vreeland Road, Suite 204, Florham Park, NJ 07932

Contact Person: Phone No.: Bryan Fuerte 973-822-8221 x21

Fax No.:

973-822-6221

Microphone:

Rion

Type: UC53A

Serial no: 319760

Sens:-26.69dB

Preamplifier

Rion

Type: NH21

Serial no: 27537

Measurement Results:

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10	Passed
Self-generated noise - IEC 61672-3 Ed.2 Clause 11	Passed
Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency weightings; C Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14	Passed
Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16	Passed
Level linearity including the level range control - IEC 61672-3 Ed.2.0 Clause 17	Passed
Toneburst response - IEC 61672-3 Ed.2.0 Clause 18	Passed
Peak C sound level - IEC 61672-3 Ed.2.0 Clause 19	Passed
Overload indication - IEC 61672-3 Ed.2.0 Clause 20	Passed
High level stability test - IEC 61672-3 Ed.2.0 Clause 21	Passed
Long term stability test - IEC 61672-3 Ed.2.0 Clause 15	Passed
Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13	Passed

Environmental conditions:

Pressure:

Temperature:

Relative humidity:

99.37

24.1

52.2

Date of calibration: 5/3/2016 Date of issue: 5/3/2016 Supervisor: Valentin Buzduga Measurements performed by:

Jeremy GotWalt

Software version: 6.1 T

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Test Report No.:36143

Manufacturer: Rion Instrument type: NL31

Serial no: 00583307

Customer: Paul Carpenter Associates, Inc.

Department: Order No:

Contact Person: Bryan Fuerte

Address: 23 Vreeland Road, Suite 204, Florham Park, NJ 07932

Environmental conditions:

Pressure: 99.37
Temperature: 24.1
Relative humidity: 52.2

Supervisor Valentin Buzduga Engineer Jeremy Gotwalt

Date: 5/3/2016

Measurement Results:

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10

Reference Calibrator: WSC4 - NOR1251-30878
Reference calibrator level: 114.06
Before calibration:
 Environmental corrections: 0.00
 Other corrections: 0.00
 Notional level: 114.06
Reference calibrator level before calibration: 115.0
After calibration:
 Environmental corrections: 0.00
 Other corrections: 0.00
 Notional level: 114.06
Reference calibrator level after calibration: 114.1
Associated Calibrator: - Associated calibrator level: Not calibrated
Test Passed

Self-generated noise - IEC 61672-3 Ed.2 Clause 11

Network	Level (dB)	Max (dB)	Uncert. (dB)	Result	Comment
A	9.1	20.0	0.3	P	Equivalent capacity
C	13.4	25.0	0.3	P	Equivalent capacity
Z	20.6	30.0	0.3	P	Equivalent capacity
Test Passed					Carlotte Control of the Control of t

Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	T	ol.	Uncert.	Dev.	Result
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	83.0	82.9	1.0	-1.0	0.2	-0.1	P
125.9	83.0	82.9	1.0	-1.0	0.2	-0.1	Р
251.2	83.0	82.9	1.0	-1.0	0.2	-0.1	P
501.2	83.0	82.9	1.0	-1.0	0.2	-0.1	P
1000.0	83.0	83.0	0.7	-0.7	0.2	0.0	P
1995.3	83.0	83.0	1.0	-1.0	0.2	0.0	P
3981.1	83.0	83.1	1.0	-1.0	0.2	0.1	P
7943.3	83.0	83.2	1.5	-2.5	0.2	0.2	P
15848.9	83.0	83.4	2.5	-16.0	0.2	0.4	P
Test Passed							

Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	T	ol.	Uncert.	Dev.	Result
	Level	Value	1.45	74.07	7.45.1		
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	83.0	82.9	1.0	-1.0	0.2	-0.1	P
125.9	83.0	83.0	1.0	-1.0	0.2	0.0	P
251.2	83.0	83.0	1.0	-1.0	0.2	0.0	P
501.2	83.0	83.1	1.0	-1.0	0.2	0.1	P
1000.0	83.0	83.1	0.7	-0.7	0.2	0.1	P
1995.3	83.0	83.1	1.0	-1.0	0.2	0.1	P
3981.1	83.0	83.2	1.0	-1.0	0.2	0.2	P
7943.3	83.0	83.2	1.5	-2.5	0.2	0.2	P
15848.9	83.0	83.4	2.5	-16.0	0.2	0.4	P
Test Passed							

Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	Т	01.	Uncert.	Dev.	Result
4-3-5	Level	Value	11000	2 400		100	
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	83.0	82.9	1.0	-1.0	0.2	-0.1	P
125.9	83.0	83.0	1.0	-1.0	0.2	0.0	P
251.2	83.0	83.0	1.0	-1.0	0.2	0.0	P
501.2	83.0	83.0	1.0	-1.0	0.2	0.0	P
1000.0	83.0	83.1	0.7	-0.7	0.2	0.1	P
1995.3	83.0	83.1	1.0	-1.0	0.2	0.1	P
3981.1	83.0	83.2	1.0	-1.0	0.2	0.2	P
7943.3	83.0	83.0	1.5	-2.5	0.2	0.0	P
15848.9	83.0	82.6	2.5	-16.0	0.2	-0.4	P
Test Passed							

Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14

Weigh	ntings	Ref.	Measured	T	ol.	Uncert.	Dev.	Result
Time	Netw	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
Fast	C	94.0	94.1	0.1	-0.1	0.2	0.1	P
Fast	Z	94.0	94.1	0.1	-0.1	0.2	0.1	P
Fast	Flat	94.0	94.1	0.1	-0.1	0.2	0.1	P
Slow	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
Leq	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
SEL	A	104.0	104.0	0.1	-0.1	0.2	0.0	P
Test	Passed							

Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16

(dB)		(dB)	ol. (dB)	Uncert. (dB)	Dev. (dB)	Result
	setting: 12		12 200			
			re SPL	measurement	S	
Measured at				2.3		
	74.1	0.8	-0.8	0.0	0.1	P
79.0	79.0	0.8	-0.8	0.0	0.0	P
84.6	84.6	0.8	-0.8	0.0	0.0	P
85.6	85.6	0.8	-0.8	0.0	0.0	P
86.6	86.6	0.8	-0.8	0.0	0.0	P
87.6	87.7	0.8	-0.8	0.0	0.1	P
88.6	88.6	0.8	-0.8 -0.8	0.0	0.0	P
74.0	74.8			0.0	0.8	P
69.0	69.1	0.8	-0.8	0.0	0.1	P
64.0	64.1	0.8	-0.8	0.0	0.1	P
59.0	59.1	0.8	-0.8	0.0	0.1	P
54.0	54.1	0.8	-0.8	0.0	0.1	P
49.0	49.1	0.8	-0.8	0.0	0.1	P
44.0	44.1	0.8	-0.8	0.0	0.1	P
39.0	39.0	0.8	-0.8	0.0	0.0	P
38.0	38.1	0.8	-0.8	0.0	0.1	P
37.0	37.1	0.8	-0.8	0.0	0.1	P
36.0	36.0	0 8	-0.8	0.0	0.0	P
35.0	35.0	0.8	-0.8	0.0	0.0	P
Measured at	1 kHz					
94.0	94.0	0.8	-0.8	0.0	0.0	P
99.0	99.0	0.8	-0.8	0.0	0.0	P
104.0		0.8	-0.8	0.0	0.0	P
109.0	109.0		-0.8	0.0	0.0	P
114.0	114.0	0.8	-0.8	0.0	0.0	P
119.0	119.1	0.8	-0.8	0.0	0.1	P
124.0	124.0	0.8	-0.8	0.0	0.0	P
125.0	125.0	0.8	-0.8	0.0	0.0	P
126.0	126.0	0.8	-0.8	0.0	0.0	P
127.0	127.0	0.8	-0.8	0.0	0.0	P
128.0	128.1	0.8		0.0	0.1	P
94.0	94.0	0.8	-0.8	0.0	0.0	P
89.0	89.0	0.8		0.0	0.0	P
84.0	84.0	0.8	-0.8	0.0	0.0	P
79.0	79.0	0.8	-0.8		0.0	P
74.0	74.0	0.8	-0.8	0.0	0.0	P
69.0	69.0	0.8	-0.8	0.0	0.0	P
64.0	64.0	0.8	-0.8	0.0	0.0	P
59.0	59.0	0.8	-0.8	0.0	0.0	P
54.0	54.0	0.8	-0.8	0.0	0.0	P
49.0	49.0	0.8	-0.8	0.0	0.0	P
44.0	44.0	0.8	-0.8	0.0	0.0	P
39.0	39.0	0.8	-0.8	0.0	0.0	P
38.0	38.0	0.8	-0.8	0.0	0.0	P
37.0	37.0	0.8	-0.8	0.0	0.0	P
36.0	35.9	0.8	-0.8	0.0	-0.1	P
35.0	34.9	0.8	-0.8	0.0	-0.1	P
Measured at	8 kHz				4.4	
94.0	94.0	0.8	-0.8	0.0	0.0	P
99.0	99.0	0.8	-0.8	0.0	0.0	P
104.0	104.0	0.8	-0.8	0.0	0.0	P
109.0	109.0	0.8	-0.8	0.0	0.0	P
	2225		26.2	5.5 %	-3.6	(7)

Level		rity on the Measured		ence le	vel range . Uncert.			Clause	16
	(dB)		(dB)		(dB)	(dB)	1000		
1	14.0	114.0	0.8	-0.8	0.0	0.0	P		
	19.0	119.0	0.8	-0.8	0.0	0.0	P		
	22.9	122.9	0.8	-0.8	0.0	0.0	P		
	23.9	123.9	0.8	-0.8	0.0	0.0	P		
	24.9	124.9	0.8	-0.8	0.0	0.0			
	25.9	125.9	0.8	-0.8	0.0	0.0	P		
	94.0	94.0	0.8	-0.8	0.0	0.0	P		
	89.0	89.1	0.8	-0.8	0.0	0.1	P		
	84.0	84.1	0.8	-0.8	0.0	0.1	P		
	79.0	79.0	0.8	-0.8	0.0	0.0	P		
	74.0	74.0	0.8	-0.8	0.0	0.0	P		
	69.0	69.0	0.8	-0.8	0.0	0.0	P		
	64.0	64.0	0.8	-0.8	0.0	0.0	P		
	59.0	59.0	0.8	-0.8	0.0	0.0	P		
	54.0	54.0	0.8	-0.8	0.0	0.0	P		
	49.0	49.0	0.8	-0.8	0.0	0.0	P		
	44.0	44.0	0.8	-0.8	0.0	0.0	P		
	39.0	39.0	0.8	-0.8	0.0	0.0	P		
	38.0	38.1	0.8	-0.8	0.0	0.1	P		
	37.0	37.1	0.8	-0.8	0.0	0.1	P		
	36.0	36.0	0.8	-0.8	0.0	0.0	P		
	35.0	35.0	0.8	-0.8	0.0	0.0	P		
Test	Passed								

Level linearity including the level range control - IEC 61672-3 Ed.2.0 Clause 17

Full Scale	Ref. Value	Measured Value	Tol. Value	Uncert.	Dev.	Result
(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Measured at 1	kHz					
The following	measurem	ents are SPI	measure	ments		
Measuring the	referenc	e level on t	che avail	able ranges.	0 - 60	
130	94.0	94.0	0.8	0.25	0.0	P
120	94.0	94.0	0.8	0.25	0.0	P
110	94.0	94.1	0.8	0.25	0.1	P
100	94.0	94.1	0.8	0.25	0.1	P
Measuring 5 dB	B below f	ull scale or	all ava	ilable range	es.	
130	125.0	125.0	0.8	0.25	0.0	P
120	115.0	115.0	0.8	0.25	0.0	P
110	105.0	105.1	0.8	0.25	0.1	P
100	95.0	95.1	0.8	0.25	0.1	P
90	85.0	85.1	0.8	0.25	0.1	P
80	75.0	75.1	0.8	0.25	0.1	P
Test Passed						

Toneburst response - IEC 61672-3 Ed.2.0 Clause 18

Burst type	Ref.	Measured	T	01.	Uncert.	Dev.	Result
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast 200 mSec	125.0	125.0	0.5	-0.5	0.3	0.0	P
Fast 2.0 mSec	108.0	108.0	1.0	-1.5	0.3	0.0	P
Fast 0.25 mSec	99.0	98.9	1.0	-3.0	0.3	-0.1	P
Slow 200 mSec	118.6	118.5	0.5	-0.5	0.3	-0.1	P
Slow 2.0 mSec	99.0	98.9	1.0	-3.0	0.3	-0.1	P
SEL 200 mSec	119.0	119.0	0.5	-0.5	0.3	0.0	P
SEL 2.0 mSec	99.0	99.0	1.0	-1.5	0.3	0.0	P
SEL 0.25 mSec	90.0	89.9	1.0	-3.0	0.3	-0.1	P
Test Passed							

Peak C sound level - IEC 61672-3 Ed.2.0 Clause 19

Pulse	Pulse	Ref.	Ref.	Measured	Tol.	Uncert.	Dev.	Result
Type	Freq.	RMS	Peak	Value				
	(HZ)	(dB)	(dB)	(dB)	(+/-dB)	(dB)	(dB)	
1 cycle	8k	127.0	130.4	130.1	2.0	0.35	-0.3	P
Pos 1/2 cycle	500	130.0	132.4	132.1	1.0	0.35	-0.3	P
Neg 1/2 cycle	500	130.0	132.4	132.1	1.0	0.35	-0.3	P
Test Passed								

Overload indication - IEC 61672-3 Ed.2.0 Clause 20

	Measured	Tol.	Uncert.	Result
	(dB)	(+/-dB)	(dB)	
Level difference of positive and negative pulses	s: 0.0	1.5	0.25	P
Positive 1/2 cycle 4 kHz. Overload occurred at:	139.2			
Negative 1/2 cycle 4 kHz. Overload occurred at:	139.2			
Test Passed				

High level stability test - IEC 61672-3 Ed.2.0 Clause 21

Test signal:	Sine wa	ve at 1	kHz		
Initial	Final	Diff.	Tol.	Uncert.	Result
level	level		value		
(dB)	(dB)	(dB)	(dB)	(dB)	
137.0	137.0	0.0	0.1	0.1	P
Test Passed					

Long term stability test - IEC 61672-3 Ed.2.0 Clause 15

Test signal: Sine wave at 1 kHz
Time inteval StartLevel StopLevel Difference Tolerence Result
(mm:SS) (dB) (dB) (dB)
25:49 94.0 94.0 0.0 0.1 P
Test Passed

Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13

A-Weigh				field	Cana	D- 61	rate and	Compan	Uncert	Tol	Result	
Frequer		SLM		ophone		Refl.		Screen	oucerc	TOI	Result	
	Val (dB)	(dB)	Val	U	Val	U	Val (dB)		(dB)	(dB)	(dB)	
62 11-			(dB)	(dB)	(dB)	(dB)	(dB)	(dB)			9.7.7.1	rs.
63 Hz	-0.1	0.2	0.0	0.1					0.2	+-1.0	-0.1	P
125 Hz	-0.1	0.2	0.1	0.1					0.2	+-1.0	0.0	b
250 Hz	-0.1	0.2	0.0	0.1					0.2	+-1.0	-0.1	P
500 Hz	-0.1	0.2	-0.1	0.1					0.2	+-1.0	-0.2	P
1 kHz	0.0	0.2	-0.1	0.1					0.2	+-0.7	-0.1	P
2 kHz	0.0	0.2	-0.1	0.2					0.3	+-1.0	-0.1	P
4 kHz	0.1	0.2	0.2	0.2					0.3	+-1.0	0.3	P
8 kHz	0.2	0.2	-0.5	0.4							5 -0.3	P
16 kHz	0.4	0.2	-2.4	0.7					0.7 +	2.5/-16	.0-2.0	P
C-Weigh	ted re	sults:	Free	field								
Frequen	cy S	LM	Micro	phone	Case	Refl.	Wind	Screen	Uncert	Tol	Result	
	Val	U	Val	U	Val	U	Val					
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	-0.1	0.2	0.0	0.1					0.2	+-1.0	-0.1	P
125 Hz	0.0	0.2	0.1	0.1					0.2	+-1.0	0.1	P
250 Hz	0.0	0.2	0.0	0.1					0.2	+-1.0	0.0	P
500 Hz	0.1	0.2	-0.1	0.1					0.2	+-1.0	0.0	P
1 kHz	0.1	0.2	-0.1	0.1					0.2	+-0.7	0.0	P
2 kHz	0.1	0.2	-0.1	0.2					0.3	+-1.0	0.0	P
4 kHz	0.2	0.2	0.2	0.2					0.3	+-1.0	0.4	P
8 kHz	0.2	0.2	-0.5	0.4					0.5 +		5 -0.3	P
16 kHz	0.4	0.2	-2.4	0.7					0.7 +3	2.5/-16	.0-2.0	P
Z-Weigh	ted re		Free	field								
Frequen		LM		phone	Case	Refl.	Wind	Screen	Uncert	Tol	Result	
	Val	U	Val	U	Val	U	Val	U				
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	-0.1	0.2	0.0	0.1					0.2	+-1.0	-0.1	P
125 Hz	0.0	0.2	0.1	0.1					0.2	+-1.0	0.1	P
250 Hz	0.0	0.2	0.0	0.1					0.2	+-1.0	0.0	P
500 Hz	0.0	0.2	-0.1	0.1					0.2	+-1.0	-0.1	P
1 kHz	0.1	0.2	-0.1	0.1					0.2	+-0.7	0.0	P
2 kHz	0.1	0.2	-0.1	0.2					0.3	+-1.0	0.0	P
4 kHz	0.2		0.2	0.2					0.3	+-1.0	0.4	P
8 kHz	0.0	0.2	-0.5	0.4					0.5 +:	1.5/-2.	5 -0.5	P
	-0.4		-2.4							2.5/-16		P
					f Rior	/ UC!	3A 31	9760 has				
for the												
Test Pa												
The ove	rall f	requen	cy res	ponse	of the	sound	d leve	1 meter	and			

The overall frequency response of the sound level meter and microphone response has shown to conform with the requirements in IEC 61672-3 for a class 1 sound level meter.

JDG-

CALIBRATION LABORATORY

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.36144

Instrument:

Microphone

Date Calibrated: 5/3/2016

ZANNAH (ZANNAH ZANNAH ZANN

Cal Due: 5/3/2017

Model:

UC53A

Status:

Rion

In tolerance:

Received Sent X X

Manufacturer: Serial number:

319760

Out of tolerance:

Composed of:

See comments:

Contains non-accredited tests: __Yes X No

Customer: Tel/Fax:

Paul Carpenter Associates, Inc. 973-822-8221 x21/-833-9221

Address:

23 Vreeland Road, Suite 204

Florham Park, NJ 07932

Tested in accordance with the following procedures and standards:

Calibration of Measurement Microphones, Scantek, Inc., Rev. 2/25/2015

Instrumentation used for calibration: N-1504 Norsonic Test System:

Instrument - Manufacturer	Description	S/N	Cal. Date	Traceability evidence	Cal. Due	
monante mananacarer	Description	-/	can bute	Cal. Lab / Accreditation	can buc	
483B-Norsonic	SME Cal Unit	31061	Jul 20, 2015	Scantek, Inc./ NVLAP	Jul 20, 2016	
DS-360-SRS	Function Generator	88077	Sep 9, 2014	ACR Env./ A2LA	Sep 9, 2016	
34401A-Agilent Technologies	Digital Voltmeter	MY47011118	Sep 24, 2015	ACR Env./ A2LA	Sep 24, 2016	
HM30-Thommen	Meteo Station	1040170/39633	Oct 23, 2015	ACR Env./ A2LA	Oct 23, 2016	
PC Program 1017 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	-	
1253-Norsonic	Calibrator	22909	Nov 10, 2015	Scantek, Inc./ NVLAP	Nov 10, 2016	
1203-Norsonic	Preamplifier	92268	Oct 14, 2015	Scantek, Inc./ NVLAP	Oct 14, 2016	
4192-Brüel&Kjær	Microphone	2854675	Nov 11, 2015	NPL-UK / UKAS	Nov 11, 2016	

Instrumentation and test results are traceable to SI - BIPM through standards maintained by NPL (UK) and NIST (USA)

Calibrated by:	Jeremy Gotwalt	Authorized signatory:	Valentin/Buzduga
Signature	Just & Letwa	Signature	1,0
Date	5/3/16	Date	5/04/2016

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2016\Rion53A_319760_M1.doc

Page 1 of 2

Results summary: Device was tested and complies with following clauses of mentioned specifications:

(MET ^{2,3}	NOT MET	NOT TESTED	MEASUREMENT EXPANDED UNCERTAINTY (coverage factor 2)	
Open circuit sens	sitivity (insert voltage method, 250 Hz)	×			See below
	Actuator response	×			63 – 200Hz: 0.3 dB 200 – 8000 Hz: 0.2 dB 8 – 10 kHz: 0.5 dB 10 – 20 kHz: 0.7 dB 20 – 50 kHz: 0.9 dB 50 – 100 kHz: 1.2 dB
Frequency response	FF/Diffuse field responses	x			63 – 200Hz: 0.3 dB 200 – 4000 Hz: 0.2 dB 4 – 10 kHz: 0.6 dB 10 – 20 kHz: 0.9 dB 20 – 50 kHz: 2.2 dB 50 – 100 kHz: 4.4 dB
	Scantek, Inc. acoustical method			x	31.5 – 125 Hz: 0.16 dB 250, 1000 Hz: 0.12 dB 2 – 8 kHz: 0.8 dB 12.5 – 16 kHz: 2.4 dB

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

Note: The free field/diffuse field characteristics were calculated based on the measured actuator response and adjustment coefficients as provided by the manufacturer. The uncertainties reported for these characteristics may include assumed uncertainty components for the adjustment coefficients.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
23.2 ± 1.0	99.33 ± 0.001	53.8 ± 2.0

Main measured parameters:

Tone frequency (Hz)	Measured ⁴ /Acceptable Open circuit sensitivity (dB re 1V/Pa)	Sensitivity (mV/Pa)
250	-26.69 ± 0.12/ -28.0 +3.0/-1.0	46.27

⁴ The reported expanded uncertainty is calculated with a coverage factor k=2.00

Tests made with following attachments to instrument and auxiliary devices:

Protection grid mounted for sensitivity measurements
Actuator type: G.R.A.S. RA0014

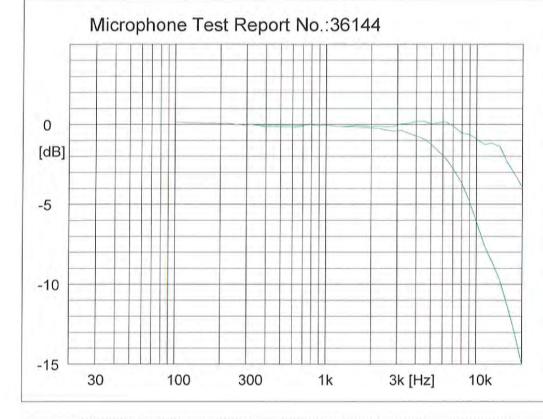
Measured Data: Found on Microphone Test Report # 36144 of one page.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST,

or any agency of the federal government.


Document stored as: Z:\Calibration Lab\Mic 2016\Rion53A_319760_M1.doc

Ph/Fax: 410-290-7726/ -9167

callab@scantekinc.com

² Results are normalized to the reference conditions.

The tests marked with (*) are not covered by the current NVLAP accreditation.

Rion Type: UC53A

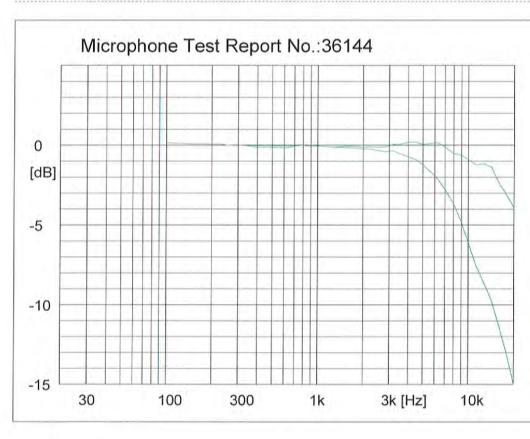
Serial no: 319760

Sensitivity: 46.27 mV/Pa -26.69 ±0.12 dB re. 1 V/Pa

Date: 5/3/2016

Signature:

Measurement conditions: Polarisation voltage:


Pressure: Temperature: Relative humidity: 0.0 V 99.33 ±0.00 kPa 23.2 ±1.0 °C 53.8 ±2.0 %RH

Results are normalized to the reference conditions.

Free field response Actuator response

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Rion Type: UC53A

Serial no: 319760

Sensitivity: 46.27 mV/Pa -26.69 ±0.12 dB re. 1 V/Pa

Date: 5/3/2016

Signature:

Measurement conditions: Polarisation voltage:

99.33 ±0.00 kPa Pressure:

Temperature: Relative humidity:

Results are normalized to the reference conditions.

Free field response Actuator response

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

23.2 ±1.0 °C

53.8 ±2.0 %RH

Comment: (Z:\Calibration Lab\Mic 2016\Rion53A_319760_M1.nmf)

CALIBRATION LABORATORY

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.36510

Instrument: Sound Level Meter

Model: NL52

Manufacturer: Rion

Serial number: 01243608

5eriai ilaniber. 01243008

Tested with: Microphone UC-59 s/n 07650
Preamplifier NH-25 s/n 43637

Type (class): 1

Type (class):

Customer: Paul Carpenter Associates, Inc.

Tel/Fax: 973-822-8221 x21 / -833-9221

Date Calibrated:6/27/2016 Cal Due: 6/27/2017

Status: Received Sent

In tolerance: X X
Out of tolerance:

See comments:

Contains non-accredited tests: __Yes X_No Calibration service: __Basic X_Standard Address: 7 Columbia Turnpike, Suite 101

Florham Park, NJ 07932

Tested in accordance with the following procedures and standards:

Calibration of Sound Level Meters, Scantek Inc., Rev. 6/26/2015 SLM & Dosimeters – Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	C/NI	Cal. Date	Traceability evidence		
instrument - Manufacturer	Description	S/N	Cal. Date	Cal. Lab / Accreditation	Cal. Due	
483B-Norsonic	SME Cal Unit	25747	Jul 2, 2015	Scantek, Inc./ NVLAP	Jul 2, 2016	
DS-360-SRS	Function Generator	61646	Aug 12, 2015	ACR Env./ A2LA	Aug 12, 2017	
34401A-Agilent Technologies	Digital Voltmeter	MY41022043	Aug 13, 2015	ACR Env. / A2LA	Aug 13, 2016	
DPI 141-Druck	Pressure Indicator	790/00-04	Nov 18, 2014	ACR Env./ A2LA	Nov 18, 2016	
HMP233-Vaisala Oyj	Humidity & Temp. Transmitter	V3820001	Oct 1, 2015	ACR Env./ A2LA	Apr 1, 2017	
PC Program 1019 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	-	
1251-Norsonic	Calibrator	30878	Nov 10, 2015	Scantek, Inc./ NVLAP	Nov 10, 2016	

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
23.2	100.51	51.9

Calibrated by:	Jeremy Gotwalt	Authorized signatory:	, William D, Gallagher			
Signature	und I Coloni	Signature	Willer W Siello			
Date	6/27/16	Date	6/27/2016			

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2016\RIONL52_01243608_M1.doc

Page 1 of 2

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB
INDICATION AT THE CALIBRATION CHECK FREQUENCY - IEC61672-3 ED.2 CLAUSE 10	Passed	0.15
SELF-GENERATED NOISE - IEC 61672-3 ED.2 CLAUSE 11	Passed	0.30
FREQUENCY WEIGHTINGS: A NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: C NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: Z NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY AND TIME WEIGHTINGS AT 1 KHZ IEC 61672-3 ED.2.0 CLAUSE 14	Passed	0.20
LEVEL LINEARITY ON THE REFERENCE LEVEL RANGE - IEC 61672-3 ED.2 CLAUSE 16	Passed	0.25
TONEBURST RESPONSE - IEC 61672-3 ED.2.0 CLAUSE 18	Passed	0.30
PEAK C SOUND LEVEL - IEC 61672-3 ED.2.0 CLAUSE 19	Passed	0.35
OVERLOAD INDICATION - IEC 61672-3 ED.2.0 CLAUSE 20	Passed	0.25
HIGH LEVEL STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 21	Passed	0.1
LONG TERM STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 15	Passed	0.1
FILTER TEST 1/10CTAVE: RELATIVE ATTENUATION - IEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
FILTER TEST 1/3OCTAVE: RELATIVE ATTENUATION - IEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
COMBINED ELECTRICAL AND ACOUSTICAL TEST - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	See test report

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

Comments: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2, to demonstrate that the model of sound level meter fully conforms to the requirements in the IEC 61672-2, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger.

Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

Microphone:	Rion UC-59 s/n 07650 for acoustical test	
Preamplifier:	Rion NH-25 s/n 43637 for all tests	
Other: line ada	otor ADP005 (18pF) for electrical tests	
Accompanying	acoustical calibrator: none	
Windscreen:	Rion WS-10	

Measured Data: in Test Report #36510 of 10 pages.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Parameters are certified at actual environmental conditions.

The tests marked with (*) are not covered by the current NVLAP accreditation.

Summary of Test Report No.:36510

Rion Type: NL52 Serial no: 01243608

Customer: Paul Carpenter Associates, Inc.

Address: 7 Columbia Turnpike, Suite 101, Florham Park, NJ 07932

 Contact Person:
 Bryan Fuerte

 Phone No.:
 973-822-8221 x21

 Fax No.:
 973-833-9221

Instrument software version: NL-52 v1.5, NX-42EX v1.5, NX-42RT v1.5

Microphone: Rion Type: UC-59 Serial no: 07650 Sens:-26.79dB

Preamplifier Rion Type: NH-25 Serial no: 43637

Wind screen Rion Type: WS-10

Measurement Results:

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10	Passed
Self-generated noise - IEC 61672-3 Ed.2 Clause 11	Passed
Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14	Passed
Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16	Passed
Toneburst response - IEC 61672-3 Ed.2.0 Clause 18	Passed
Peak C sound level - IEC 61672-3 Ed.2.0 Clause 19	Passed
Overload indication - IEC 61672-3 Ed.2.0 Clause 20	Passed
High level stability test - IEC 61672-3 Ed.2.0 Clause 21	Passed
Long term stability test - IEC 61672-3 Ed.2.0 Clause 15	Passed
Filter Test 1/1octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3	Passed
Filter Test 1/3octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3	Passed
Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13	Passed

Environmental conditions:

Pressure: Temperature: Relative humidity:

100.51 23.2 51.9

Date of calibration: 6/27/2016 Date of issue: 6/27/2016 Supervisor: Valentin Buzduga Measurements performed by:

Jeremy Gotwalt
Software version: 6.1 T

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com Test Report No.:36510

Manufacturer: Rion Instrument type: NL52

Serial no: 01243608

Customer: Paul Carpenter Associates, Inc.

Department:

Order No:

Contact Person: Bryan Fuerte

Address: 7 Columbia Turnpike, Suite 101, Florham Park, NJ 07932

Environmental conditions:

Pressure: 100.51
Temperature: 23.2
Relative humidity: 51.9

Supervisor Valentin Buzduga Engineer Jeremy Gotwalt

Date: 6/27/2016

Measurement Results:

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10

Reference Calibrator: WSC4 - NOR1251-30878
Reference calibrator level: 114.06
Before calibration:
 Environmental corrections: 0.00
 Other corrections: -0.02
 Notional level: 114.04
Reference calibrator level before calibration: 114.1
After calibration:
 Environmental corrections: 0.00
 Other corrections: -0.02
 Notional level: 114.04
Reference calibrator level after calibration: 114.0
Associated Calibrator: Associated calibrator level: Not calibrated
Test Passed

Self-generated noise - IEC 61672-3 Ed.2 Clause 11

Network	Level	Max	Uncert.	Result	Comment
	(dB)	(dB)	(dB)		
A	10.5	17.0	0.3	P	Equivalent capacity
C	14.3	25.0	0.3	P	Equivalent capacity
Z	19.8	30.0	0.3	B	Equivalent capacity
Test Passed					The part of the Part of Windships

Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	T	01.	Uncert.	Dev.	Result
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	93.0	92.9	1.0	-1.0	0.2	-0.1	P
125.9	93.0	93.0	1.0	-1.0	0.2	0.0	P
251.2	93.0	92.9	1.0	-1.0	0.2	-0.1	P
501.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
1000.0	93.0	93.0	0.7	-0.7	0.2	0.0	P
1995.3	93.0	93.0	1.0	-1.0	0.2	0.0	P
3981.1	93.0	93.0	1.0	-1.0	0.2	0.0	P
7943.3	93.0	93.1	1.5	-2.5	0.2	0.1	P
15848.9	93.0	91.8	2.5	-16.0	0.2	-1.2	P
Test Passed							

Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	r	01.	Uncert.	Dev.	Result
(Hz)	Level (dB)	Value (dB)	(dB)	(dB)	(dB)	(dB)	
63.1	93.0	92.9	1.0	-1.0	0.2	-0.1	P
125.9	93.0	93.0	1.0	-1.0	0.2	0.0	P
251.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
501.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
1000.0	93.0	93.0	0.7	-0.7	0.2	0.0	P
1995.3	93.0	93.0	1.0	-1.0	0.2	0.0	P
3981.1	93.0	93.0	1.0	-1.0	0.2	0.0	P
7943.3	93.0	93.1	1.5	-2.5	0.2	0.1	P
15848.9	93.0	91.8	2.5	-16.0	0.2	-1.2	P
Test Passed							

Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref. Level	Meas. Value	Т	01.	Uncert.	Dev.	Result
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	93.0	92.9	1.0	-1.0	0.2	-0.1	P
125.9	93.0	93.0	1.0	-1.0	0.2	0.0	P
251.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
501.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
1000.0	93.0	93.0	0.7	-0.7	0.2	0.0	P
1995.3	93.0	93.0	1.0	-1.0	0.2	0.0	P
3981.1	93.0	93.0	1.0	-1.0	0.2	0.0	P
7943.3	93.0	93.0	1.5	-2.5	0.2	0.0	P
15848.9	93.0	93.0	2.5	-16.0	0.2	0.0	P
Test Passed							

Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14

Weigh	tings	Ref.	Measured	T	01.	Uncert.	Dev.	Result
Time	Netw	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
Fast	C	94.0	94.0	0.1	-0.1	0.2	0.0	P
Fast	Z	94.0	94.0	0.1	-0.1	0.2	0.0	P
Slow	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
Leg	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
SEL	A	104.0	104.0	0.1	-0.1	0.2	0.0	P
Tost	Dassed							

Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16

(dB)	(dB)	(dB)	ol. (dB)	Uncert. (dB)	Dev.	Result
	setting: 13					
		nents a	re SPL	measurements		
Measured at		0 0	0 0	0.0	0.0	0
84.0	84.0		-0.8	0.0	0.0	P
89.0	89.0	0.8	-0.8	0.0	0.0	P
94.6	94.6	0.8	-0.8	0.0	0.0	P
95.6	95.6	0.8	-0.8	0.0	0.0	P
96.6	96.6	0.8	-0.8	0.0	0.0	P
97.6	97.6	0.8	-0.8	0.0	0.0	P
98.6	98.6	0.8	-0.8	0.0	0.0	P
84.0	84.7	0.8	-0.8	0.0	0.7	P
79.0	79.1	0.8	-0.8	0.0	0.1	P
74.0	74.2	0.8	-0.8	0.0	0.2	P
69.0	69.1	0.8	-0.8	0.0	0.1	P
64.0	64.1	0.8	-0.8	0.0	0.1	P
59.0	59.2	0.8	-0.8	0.0	0.2	P
54.0	54.2	0.8	-0.8	0.0	0.2	P
49.0	49.1	0.8	-0.8	0.0	0.1	P
44.0	44.0	0.8	-0.8	0.0	0.0	P
39.0	39.0	0.8	-0.8	0.0	0.0	P
34.0	34.1	0.8	-0.8	0.0	0.1	P
29.0	29.1	0.8	-0.8	0.0	0.1	P
28.0	28.0	0.8	-0.8	0.0	0.0	P
27.0	26.9	0.8	-0.8	0.0	-0.1	P
26.0	25.9	0.8			-0.1	P
25.0	24.9	0.8	-0.8	0.0	-0.1	P
Measured at		0.0	-0.0	0.0	0.0	P
94.0 99.0	94.0	0.8	-0.8	0.0	0.0	P
	99.0			0.0	0.0	P
104.0	104.0	0.8	-0.8	0.0	0.0	P
114.0	114.0	0.8	-0.8	0.0	0.0	P
119.0	119.0	0.8	-0.8	0.0	0.0	P
124.0	124.0	0.8	-0.8	0.0	0.0	P
129.0	129.0	0.8	-0.8	0.0	0.0	P
134.0	134.0	0.8	-0.8	0.0	0.0	P
135.0	135.0	0.8	-0.8	0.0	0.0	P
136.0	136.0	0.8	-0.8	0.0	0.0	P
137.0	137.0	0.8	-0.8	0.0	0.0	P
138.0	138.0	0.8	-0.8	0.0	0.0	P
94.0	94.0	0.8	-0.8	0.0	0.0	P
89.0	89.0	0.8	-0.8	0.0	0.0	P
84.0	84.0	0.8	-0.8	0.0	0.0	P
79.0	79.0	0.8	-0.8	0.0	0.0	P
74.0	74.0	0.8	-0.8		0.0	P
69.0	69.0	0.8		0.0	0.0	P
64.0	64.0	0.8	-0.8	0.0	0.0	P
59.0	59.0	0.8	-0.8		0.0	P
54.0	54.0	0.8		0.0	0.0	P
49.0	49.0	0.8			0.0	B
44.0	44.0	0.8		0.0	0.0	P
39.0	39.0	0.8	-0.8		0.0	P
34.0	34.0	0.8	-0.8	0.0	0.0	P
29.0	29.0	0.8	-0.8	0.0	0.0	P
28.0	28.1	0.8		0.0	0.1	P
	7777					

Ref.	Measured		01.	vel range - Uncert.	Dev.	Result	Clause	10
(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	.,		
27.0	27.0	0.8	-0.8	0.0	0.0	P		
26.0	26.0	0.8	-0.8	0.0	0.0	P		
25.0	25.0	0.8	-0.8	0.0	0.0	P		
Measured at								
94.0	94.0	0.8	-0.8	0.0	0.0	P		
99.0	99.0	0.8	-0.8	0.0	0.0	P		
104.0	104.0	0.8	-0.8	0.0	0.0	P		
109.0	109.0	0.8	-0.8	0.0	0.0	P		
114.0	114.0	0.8	-0.8	0.0	0.0	P		
119.0	119.0	0.8	-0.8	0.0	0.0	P		
124.0	124.0	0.8	-0.8	0.0	0.0	P		
129.0	129.0	0.8	-0.8	0.0	0.0	P		
132.9	132.9	0.8	-0.8	0.0	0.0	P		
133.9	133.9	0.8	-0.8	0.0	0.0	P		
134.9	134.9	0.8	-0.8	0.0	0.0	P		
135.9	135.9	0.8	-0.8	0.0	0.0	P		
136.9	136.9	0.8	-0.8	0.0	0.0	P		
94.0	94.0	0.8	-0.8	0.0	0.0	P		
89.0	89.0	0.8	-0.8	0.0	0.0	P		
84.0	84.0	0.8	-0.8	0.0	0.0	P		
79.0	79.0	0.8	-0.8	0.0	0.0	P		
74.0	74.0	0.8	-0.8	0.0	0.0	P		
69.0	69.0	0.8	-0.8	0.0	0.0	P		
64.0	64.0	0.8	-0.8	0.0	0.0	P		
59.0	59.0	0.8	-0.8	0.0	0.0	P		
54.0	54.0	0.8	-0.8	0.0	0.0	P		
49.0	49.0	0.8	-0.8	0.0	0.0	P		
44.0	44.0	0.8	-0.8	0.0	0.0	P		
39.0	39.0	0.8	-0.8	0.0	0.0	P		
34.0	33.9	0.8	-0.8	0.0	-0.1	P		
29.0	28.9	0.8	-0.8	0.0	-0.1	P		
28.0	28.0	0.8	-0.8	0.0	0.0	P		
27.0	27.0	0.8	-0.8	0.0	0.0	P		
26.0	25.9	0.8	-0.8	0.0	-0.1	P		
25.0	24.9	0.8	-0.8	0.0	-0.1	P		

Toneburst response - IEC 61672-3 Ed.2.0 Clause 18

Burst	type	Ref.	Measured	T'	01.	Uncert.	Dev.	Result
	1376	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast	200 mSec	135.0	135.0	0.5	-0.5	0.3	0.0	P
Fast	2.0 mSec	118.0	118.0	1.0	-1.5	0.3	0.0	P
Fast (0.25 mSec	109.0	108.9	1.0	-3.0	0.3	-0.1	P
Slow	200 mSec	128.6	128.6	0.5	-0.5	0.3	0.0	P
Slow	2.0 mSec	109.0	109.0	1.0	-3.0	0.3	0.0	P
SEL	200 mSec	129.0	129.0	0.5	-0.5	0.3	0.0	P
SEL	2.0 mSec	109.0	109.0	1.0	-1.5	0.3	0.0	P
SEL (0.25 mSec	100.0	99.9	1.0	-3.0	0.3	-0.1	P
Test I	Pagged							

Peak C sound level - IEC 61672-3 Ed.2.0 Clause 19

Pulse	Pulse	Ref.	Ref.	Measured	Tol.	Uncert.	Dev.	Result
Type	Freq.	RMS	Peak	Value				
	(Hz)	(dB)	(dB)	(dB)	(+/-dB)	(dB)	(dB)	
1 cycle	8 k	130.0	133.4	133.3	2.0	0.35	-0.1	P
Pos 1/2 cycle	500	133.0	135.4	135.1	1.0	0.35	-0.3	P
Neg 1/2 cycle	500	133.0	135.4	135.1	1.0	0.35	-0.3	P
Test Passed								

Overload indication - IEC 61672-3 Ed.2.0 Clause 20

	Measured	Tol.	Uncert.	Result
	(dB)	(+/-dB)	(dB)	
Level difference of positive and negative pulses	3: 0.2	1.5	0.25	P
Positive 1/2 cycle 4 kHz. Overload occurred at:	139.6			
Negative 1/2 cycle 4 kHz. Overload occurred at:	139.4			
Test Passed				

High level stability test - IEC 61672-3 Ed.2.0 Clause 21

Test signal:	Sine wa	ve at 1	kHz		
Initial	Final	Diff.	Tol.	Uncert.	Result
level	level		value		
(dB)	(dB)	(dB)	(dB)	(dB)	
137.0	137.0	0.0	0.1	0.1	P
Test Passed					

Long term stability test - IEC 61672-3 Ed.2.0 Clause 15

Test signal:					
Time inteval	StartLevel	StopLevel	Difference	Tolerence	Result
(mm:SS)	(dB)	(dB)	(dB)	(dB)	
34:59	94.0	94.0	0.0	0.1	N
Test Passed					

Filter Test 1/1octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3

Test 1/1 oct	ave filter X	= 3 fexact=	7943.282Hz	class 1
Nominal	Measured	LoLim	HiLim	Result
f[Hz]	L[dB]	(dB)	[dB]	[P/F]
501.187	30.3	0.0	58.0	P
1000.00	30.5	0.0	67.0	P
1995.26	42.0	0.0	86.0	P
3981.07	88.2	0.0	110.5	P
5623.41	124.8	123.0	126.0	P
6130.56	127.9	126.7	128.3	P

Filter Test 1/3octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3

Test Passed

Test 1/3	octave filter X	= 12 fexac	t=15848.932Hz	class	1
	al Measured			esult	-
	L[dB]		[dB] [P/Fl	
2939.3			58.0	P	
5190.10	60.8		67.0	P	
	79.5		86.0	P	
	105.1			P	
14125.4	124.3	123.0	126.0	P P P	
	127.2			P	
15012.0	127.9	127.4	128.3	P	
15437.2	128.0	127.6	128.3	P	
15848.9	128.0	127.7	128.3	P P P	
16271.7	127.9	127.6	128.3	P	
16732.6	127.9	127.4	128.3	P	
17235.0	127.1	126.7	128.3	P	
17782.8	123.9	123.0	126.0	P P	
20514.4	104.7	0.0	110.5	P	
	30.9		86.0	P	
48397.1	32.0	0.0	67.0	P	
85456.6	42.5	0.0	58.0	P	
Test 1/3	octave filter X=	= 13 fexact	t=19952.623Hz	class	1

Nominal	Measured	LoLim	Hilim	Result
f[Hz]	L[dB]	[dB]	[dB]	[P/F]
3700.45	41.4	0.0	58.0	P
6534.02	57.6	0.0	67.0	P
10603.4	77.3	0.0	86.0	P P
15414.9	105.1	0.0	110.5	P
17782.8	125.2	123.0	126.0	
18348.0	127.4	126.7	128.3	P P P
18898.9	127.9	127.4	128.3	P
19434.2	128.0	127.6	128.3	P
19952.6	127.9	127.7	128.3	P
20484.8	128.0	127.6	128.3	P
21065.1	127.9	127.4	128.3	P
21697.6	127.2	126.7	128.3	P
22387.2	123.6	123.0	126.0	P
25826.2	86.8	0.0	110.5	
37545.4	39.5	0.0	86.0	P P P
60928.4	36.4	0.0	67.0	P
107584	35.8	0.0	58.0	P
Test Passed				

Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13

A-Weigh	ted r	esults:		field								
Frequer		SLM		ophone		Refl.		Screen	Uncer	t Tol	Result	
	Val	U	Val	U	Val	U	Val					
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	-0.1	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	-0.1	P
125 Hz	0.0	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.0	P
250 Hz	-0.1	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	-0.1	P
500 Hz	0.0	0.2	-0.1	0.1			0.0	0.1	0.2	+-1.0	-0.1	P
1 kHz	0.0	0.2	0.0	0.1			0.1	0.1	0.2	+-0.7	0.1	P
2 kHz	0.0	0.2	0.0	0.2			0.3	0.2	0.4	+-1.0	0.3	P
4 kHz	0.0	0.2	0.1	0.2			0.3	0.2	0.4	+-1.0	0.4	P
8 kHz	0.1	0.2	0.2	0.4			0.0	0.3	0.5	+1.5/-2.	5 0.3	P
16 kHz	-1.2	0.2	0.3	0.7			-0.7	0.4	0.8 -	+2.5/-16	.0-1.6	P
C-Weigh	ted re	esults:	Free	field								
Frequen	cy S	SLM	Micro	phone	Case	Refl.	Wind	Screen	Uncert	Tol	Result	
	Val	U	Val	U	Val	U	Val	U				
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	-0.1	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	-0.1	P
125 Hz	0.0	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.0	P
250 Hz	0.0	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.0	P
500 Hz	0.0	0.2	-0.1	0.1			0.0	0.1	0.2	+-1.0	-0.1	P
1 kHz	0.0	0.2	0.0	0.1			0.1	0.1	0.2	+-0.7	0.1	P
2 kHz	0.0	0.2	0.0	0.2			0.3	0.2	0.4	+-1.0	0.3	P
4 kHz	0.0	0.2	0.1	0.2			0.3	0.2	0.4	+-1.0	0.4	P
8 kHz	0.1	0.2	0.2	0.4			0.0	0.3	0.5	1.5/-2.	5 0.3	P
16 kHz	-1.2	0.2	0.3	0.7			-0.7	0.4	0.8 4	2.5/-16	.0-1.6	P
Z-Weigh	ted re	sults:	Free	field								
Frequen	cy S	LM	Micro	phone	Case	Refl.	Wind	Screen	Uncert	Tol	Result	
	Val	U	Va1	U	Val	U	Val	U				
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	-0.1	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	-0.1	P
125 Hz	0.0	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.0	P
250 Hz	0.0	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.0	P

Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13

500 Hz	0.0	0.2	-0.1	0.1	0.0	0.1	0.2	+-1.0	-0.1	P
1 kHz	0.0	0.2	0.0	0.1	0.1	0.1	0.2	+-0.7	0.1	P
2 kHz	0.0	0.2	0.0	0.2	0.3	0.2	0.4	+-1.0	0.3	P
4 kHz	0.0	0.2	0.1	0.2	0.3	0.2	0.4	+-1.0	0.4	P
8 kHz	0.0	0.2	0.2	0.4	0.0	0.3	0.5	+1.5/-2.5	0.2	P
16 kHz	0.0	0.2	0.3	0.7	-0.7	0.4	0.8	+2.5/-16.0	0-0.4	P

The actual frequency response of Rion / UC-59 07650 has been used for the calculations.

Test Passed

The overall frequency response of the sound level meter, typical wind screen response and microphone response has shown to conform with the requirements in IEC 61672-3 for a class 1 sound level meter.

CALIBRATION LABORATORY

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.36511

Instrument:

Microphone

Model:

UC-59

Manufacturer:

Rion 07650

Serial number:

Composed of:

Customer: Tel/Fax:

Paul Carpenter Associates, Inc. 973-822-8221 x21/-833-9221

Date Calibrated: 6/27/2016 Cal Due: 6/27/2017

Status:

Received Sent

In tolerance:

X

Out of tolerance:

See comments:

Contains non-accredited tests: __Yes X No

Address:

7 Columbia Turnpike, Suite 101

X

Florham Park, NJ 07932

Tested in accordance with the following procedures and standards:

Calibration of Measurement Microphones, Scantek, Inc., Rev. 2/25/2015

Instrumentation used for calibration: N-1504 Norsonic Test System:

Instrument - Manufacturer	Description	s/N	Cal. Date	Traceability evidence	Cal. Due	
instrument - Manufacturer	Description	3/IN	Cal. Date	Cal. Lab / Accreditation		
483B-Norsonic	SME Cal Unit	25747	Jul 2, 2015	Scantek, Inc./ NVLAP		
DS-360-SRS	Function Generator	61646	Aug 12, 2015	ACR Env./ A2LA	Aug 12, 2017	
34401A-Agilent Technologies	es Digital Voltmeter MY41022043 Aug 13, 2015 ACR Env. / A2LA		ACR Env. / A2LA	Aug 13, 2016		
DPI 141-Druck	Pressure Indicator	790/00-04	Nov 18, 2014	ACR Env./ A2LA	Nov 18, 2016	
HMP233-Vaisala Oyj	Humidity & Temp. Transmitter	V3820001	Oct 1, 2015	ACR Env./ A2LA	Apr 1, 2017	
PC Program 1017 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.		
1253-Norsonic	Calibrator	28326	Nov 10, 2015	Scantek, Inc./ NVLAP	Nov 10, 2016	
1203-Norsonic	Preamplifier	14059	Jan 4, 2016	Scantek, Inc./ NVLAP	Jan 4, 2017	
4192-Brüel&Kjær	Microphone	2854675	Nov 11, 2015	NPL-UK / UKAS	Nov 11,2016	

Instrumentation and test results are traceable to SI - BIPM through standards maintained by NPL (UK) and NIST (USA)

Calibrated by:	Jeremy Gotwalt	Authorized signatory:	ory: William D. Gallagher		
Signature June Softm		Signature	Weller W Hallow		
Date	6/27/16	Date	(0/27/2011)		

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2016\Rion59_07650_M1.doc

Page 1 of 2

Results summary: Device was tested and complies with following clauses of mentioned specifications:

CLAUSES / METHODS ¹ FROM PROCEDURES Open circuit sensitivity (insert voltage method, 250 Hz)		MET ^{2,3}	NOT MET	NOT TESTED	MEASUREMENT EXPANDED UNCERTAINTY (coverage factor 2)
		X			See below
	Actuator response	х			63 – 200Hz: 0.3 dB 200 – 8000 Hz: 0.2 dB 8 – 10 kHz: 0.5 dB 10 – 20 kHz: 0.7 dB 20 – 50 kHz: 0.9 dB 50 – 100 kHz: 1.2 dB
Frequency response	FF/Diffuse field responses	х			63 – 200Hz: 0.3 dB 200 – 4000 Hz: 0.2 dB 4 – 10 kHz: 0.6 dB 10 – 20 kHz: 0.9 dB 20 – 50 kHz: 2.2 dB 50 – 100 kHz: 4.4 dB
	Scantek, Inc. acoustical method			x	31.5 – 125 Hz; 0.16 dB 250, 1000 Hz; 0.12 dB 2 – 8 kHz; 0.8 dB 12.5 – 16 kHz; 2.4 dB

 $^{^{1}}$ The results of this calibration apply only to the instrument type with serial number identified in this report.

Note: The free field/diffuse field characteristics were calculated based on the measured actuator response and adjustment coefficients as provided by the manufacturer. The uncertainties reported for these characteristics may include assumed uncertainty components for the adjustment coefficients.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
22.4 ± 1.2	100.60 ± 0.003	52.7 ± 3.4

Main measured parameters:

Tone frequency (Hz)	Measured ⁴ /Acceptable Open circuit sensitivity (dB re 1V/Pa)	Sensitivity (mV/Pa)
250	-26.79 ± 0.12/ -27.0 ±2.0	45.76

⁴ The reported expanded uncertainty is calculated with a coverage factor k=2.00

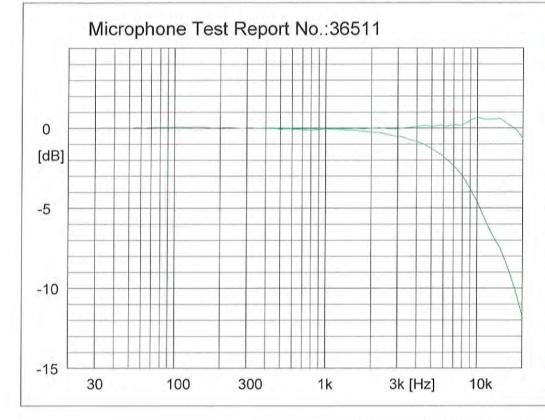
Tests made with following attachments to instrument and auxiliary devices:

Protection grid mounted for sensitivity measurements
Actuator type: G.R.A.S. RA0014

Measured Data: Found on Microphone Test Report # 36511 of one page.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com


Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2016\Rion59_07650_M1.doc

² Parameters are certified at actual environmental conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Rion Type: UC-59

Serial no: 07650

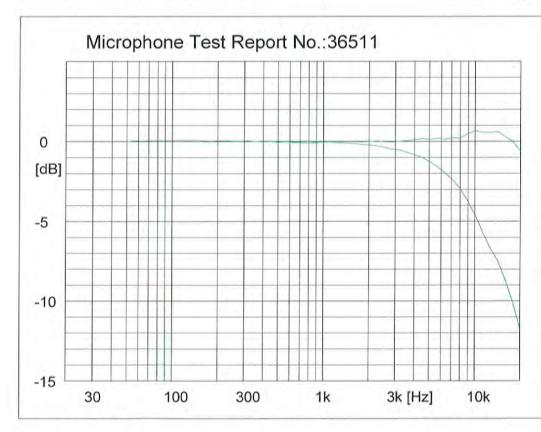
Sensitivity: 45.76 mV/Pa -26.79 ±0.12 dB re. 1 V/Pa

Date: 6/27/2016

Signature:

Measurement conditions:

Polarisation voltage:


Pressure: 100.60 ±0.00 kPa Temperature: 22.4 ±1.2 °C Relative humidity: 52.7 ±3.4 %RH

Results are normalized to the measurement conditions.

Free Field response Actuator response

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Rion Type: UC-59

Serial no: 07650

Sensitivity: 45.76 mV/Pa -26.79 ±0.12 dB re. 1 V/Pa

Date: 6/27/2016

Signature:

Measurement conditions

Polarisation voltage: Pressure:

Temperature:

22.4 ±1.2 °C Relative humidity: 52.7 ±3.4 %RH

0.0 V

100.60 ±0.00 kPa

Results are normalized to the measurement conditions.

Free Field response Actuator response

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Comment:

(Z:\Calibration Lab\Mic 2016\Rion59_07650_M1.nmf)

Scantek, Inc. CALIBRATION LABORATORY

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.36824

Instrument: Sound Level Meter

Model: NL52

Manufacturer: Rion

Serial number: 01243609

Tested with:

Microphone UC-59 s/n 07651

Preamplifier NH25 s/n 43638

Type (class):

Customer:

Paul Carpenter Associates, Inc.

Tel/Fax:

973-822-8221 x21 / -833-9221

Date Calibrated:8/17/2016 Cal Due: 8/17/2017

Status: Received Sent

In tolerance: Out of tolerance:

See comments:

Contains non-accredited tests: __Yes X No Calibration service: __ Basic X Standard

Address: 7 Columbia Turnpike, Suite 101

Florham Park, NJ 07932

Tested in accordance with the following procedures and standards:

Calibration of Sound Level Meters, Scantek Inc., Rev. 6/22/2012 SLM & Dosimeters - Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

	Barrel atten	s/N	Cal Date	Traceability evidence	Cal. Due	
Instrument - Manufacturer	Description		Cal. Date	Cal. Lab / Accreditation		
483B-Norsonic	SME Cal Unit	31061	Jul 27, 2016	Scantek, Inc./ NVLAP	Jul 27, 2017	
DS-360-SRS	Function Generator	88077	Sep 9, 2014	ACR Env./ A2LA	Sep 9, 2016	
34401A-Agilent Technologies	Digital Voltmeter	MY47011118	Sep 24, 2015	ACR Env./ A2LA	Sep 24, 2016	
HM30-Thommen	Meteo Station	1040170/39633	Oct 23, 2015	ACR Env./ A2LA	Oct 23, 2016	
PC Program 1019 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.		
1251-Norsonic	Calibrator	30878	Nov 10, 2015	Scantek, Inc./ NVLAP	Nov 10, 2016	

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
21.8	100.35	56.9

Calibrated by:	Jenemy Gotwalt	Authorized signatory:	Valentin Buzduga		
Signature	and Anton	Signature	1119		
Date	10 8/17/16	Date	8/18/2016		

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2016\RIONL52_01243609_M1.doc

Page 1 of 2

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB]
INDICATION AT THE CALIBRATION CHECK FREQUENCY - IEC61672-3 ED.2 CLAUSE 10	Passed	0.15
SELF-GENERATED NOISE - IEC 61672-3 ED.2 CLAUSE 11	Passed	0.30
FREQUENCY WEIGHTINGS: A NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: C NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: Z NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY AND TIME WEIGHTINGS AT 1 KHZ IEC 61672-3 ED.2.0 CLAUSE 14	Passed	0.20
LEVEL LINEARITY ON THE REFERENCE LEVEL RANGE - IEC 61672-3 ED.2 CLAUSE 16	Passed	0.25
TONEBURST RESPONSE - IEC 61672-3 ED.2.0 CLAUSE 18	Passed	0.30
PEAK C SOUND LEVEL - IEC 61672-3 ED.2.0 CLAUSE 19	Passed	0.35
OVERLOAD INDICATION - IEC 61672-3 ED.2.0 CLAUSE 20	Passed	0.25
HIGH LEVEL STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 21	Passed	0.1
LONG TERM STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 15	Passed	0.1
FILTER TEST 1/10CTAVE: RELATIVE ATTENUATION - IEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
FILTER TEST 1/3OCTAVE: RELATIVE ATTENUATION - IEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
COMBINED ELECTRICAL AND ACOUSTICAL TEST - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	See test report

- 1 The results of this calibration apply only to the instrument type with serial number identified in this report.
- Parameters are certified at actual environmental conditions.
- 3 The tests marked with (*) are not covered by the current NVLAP accreditation.

Comments: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2, to demonstrate that the model of sound level meter fully conforms to the requirements in the IEC 61672-2, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger. Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

rests made with the following attachin	iens to the instrument.
Microphone: Rion UC-59 s/n 07651 fo	or acoustical test
Preamplifier: Rion NH25 s/n 43638 fo	or all tests
Other: line adaptor ADP005 (18pF) for e	electrical tests
Accompanying acoustical calibrator:	none
Windscreen: Rion WS-10	

Measured Data: in Test Report # 36824 of 10 pages.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2016\RIONL52 01243609 M1.doc

Summary of Test Report No.:36824

Rion Type: NL52 Serial no: 01243609

Customer:

Paul Carpenter Associates, Inc.

Address:

7 Columbia Turnpike, Suite 101, Florham Park, NJ 07932

Contact Person:

Bryan Fuerte

Phone No.:

973-822-8221 x21

Fax No.:

973-833-9221

Instrument software version:

NL-52 v1.5, NX-42EX v1.5, NX-42RT v1.5

Microphone:

Rion

Type: UC-59

Serial no: 07651

Preamplifier

Rion

Type: NH25

Serial no: 43638

Sens:-26.82dB

Wind screen Rion

Type: WS-10

Measurement Results:

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10 Passed Self-generated noise - IEC 61672-3 Ed.2 Clause 11 Passed Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13 Passed Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13 Passed Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13 Passed Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14 Passed Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16 Passed Toneburst response - IEC 61672-3 Ed.2.0 Clause 18 Passed Peak C sound level - IEC 61672-3 Ed.2.0 Clause 19 Passed Overload indication - IEC 61672-3 Ed.2.0 Clause 20 Passed High level stability test - IEC 61672-3 Ed.2.0 Clause 21 Passed Long term stability test - IEC 61672-3 Ed.2.0 Clause 15 Passed Filter Test 1/1octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3 Passed Filter Test 1/3octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3 Passed Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13 Passed

Environmental conditions:

Pressure:

Temperature:

Relative humidity:

100.35

21.8

56.9

Date of calibration: 8/17/2016 Date of issue: 8/17/2016 Supervisor: Valentin Buzduga Measurements performed by:

Jeremy Gotwa

Software version: 6.1 T

Scantek, inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Test Report No.:36824

Manufacturer: Rion Instrument type: NL52

Serial no: 01243609

Customer: Paul Carpenter Associates, Inc.

Department:

Order No:

Contact Person: Bryan Fuerte

Address: 7 Columbia Turnpike, Suite 101, Florham Park, NJ 07932

Environmental conditions:

Pressure: 100.35
Temperature: 21.8
Relative humidity: 56.9

Supervisor Valentin Buzduga Engineer Jeremy Gotwalt

Date: 8/17/2016

Measurement Results:

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10

Reference Calibrator: WSC4 - NOR1251-30878
Reference calibrator level: 114.06
Before calibration:
 Environmental corrections: 0.00
 Other corrections: -0.02
 Notional level: 114.04
Reference calibrator level before calibration: 114.0
After calibration:
 Environmental corrections: 0.00
 Other corrections: -0.02
 Notional level: 114.04
Reference calibrator level after calibration: 114.0
Associated Calibrator: - Associated calibrator level: Not calibrated
Test Passed

Self-generated noise - IEC 61672-3 Ed.2 Clause 11

Network	LeveI (dB)	Max (dB)	Uncert. (dB)	Result	Comment
A	10.6	17.0	0.3	P	Equivalent capacity
C	14.5	25.0	0.3	P	Equivalent capacity
Z	20.1	30.0	0.3	P	Equivalent capacity
Test Passed					and the control of the state of

Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	T	ol.	Uncert.	Dev.	Result
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	93.0	92.9	1.0	-1.0	0.2	-0.1	P
125.9	93.0	93.0	1.0	-1.0	0.2	0.0	P
251.2	93.0	92.9	1.0	-1.0	0.2	-0.1	P
501.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
1000.0	93.0	93.0	0.7	-0.7	0.2	0.0	P
1995.3	93.0	93.0	1.0	-1.0	0.2	0.0	P
3981.1	93.0	93.0	1.0	-1.0	0.2	0.0	P
7943.3	93.0	93.1	1.5	-2.5	0.2	0.1	P
15848.9	93.0	91.8	2.5	-16.0	0.2	-1.2	P
Test Passed							

Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	T	ol.	Uncert.	Dev.	Result
22254	Level	Value	/ Jps	6-153	1.45%	Calmi	
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	93.0	93.0	1.0	-1.0	0.2	0.0	P
125.9	93.0	93.1	1.0	-1.0	0.2	0.1	P
251.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
501.2	93.0	93.1	1.0	-1.0	0.2	0.1	P
1000.0	93.0	93.0	0.7	-0.7	0.2	0.0	P
1995.3	93.0	93.0	1.0	-1.0	0.2	0.0	P
3981.1	93.0	93.0	1.0	-1.0	0.2	0.0	P
7943.3	93.0	93.1	1.5	-2.5	0.2	0.1	P
15848.9	93.0	91.8	2.5	-16.0	0.2	-1.2	P
Test Passed							

Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	Т	ol.	Uncert.	Dev.	Result
(Hz)	Level (dB)	Value (dB)	(dB)	(dB)	(dB)	(dB)	
63.1	93.0	92.9	1.0	-1.0	0.2	-0.1	P
125.9	93.0	93.0	1.0	-1.0	0.2	0.0	P
251.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
501.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
1000.0	93.0	93.0	0.7	-0.7	0.2	0.0	P
1995.3	93.0	93.0	1.0	-1.0	0.2	0.0	P
3981.1	93.0	93.0	1.0	-1.0	0.2	0.0	P
7943.3	93.0	93.0	1.5	-2.5	0.2	0.0	P
15848.9	93.0	93.0	2.5	-16.0	0.2	0.0	P
Test Passed							

Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14

Weigh	tings	Ref.	Measured	T.	ol.	Uncert.	Dev.	Result
Time	Netw	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
Fast	C	94.0	94.0	0.1	-0.1	0.2	0.0	P
Fast	Z	94.0	94.0	0.1	-0.1	0.2	0.0	P
Slow	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
Leq	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
SEL	A	104.0	104.0	0.1	-0.1	0.2	0.0	P
Test	Passed							

Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16

(dB)		(dB)	ol. (dB)	Uncert. (dB)	Dev.	Result
	setting: 13			201000000000000000000000000000000000000		
		ents a	re SPL	measurements		
Measured at			100	47.44	2.4	12.5
84.0	84.1	0.8	-0.8	0.25	0.1	P
89.0	89.1		-0.8	0.25	0.1	P
94.6	94.6	0.8	-0.8	0.25	0.0	P
95.6	95.7	0.8	-0.8		0.1	P
96.6	96.7	0.8	-0.8		0.1	P
97.6	97.6	0.8	-0.8	0.25	0.0	P
98.6	98.7	0.8	-0.8	0.25	0.1	P
84.0	84.7	0.8	-0.8	0.25	0.7	P
79.0	79.2	0.8	-0.8	0.25	0.2	P
74.0	74.1	0.8	-0.8		0.1	P
69.0	69.2	0.8	-0.8		0.2	P
64.0	64.1	0.8	-0.8	0.25	0.1	P
59.0	59.2	0.8	-0.8	0.25	0.2	P
54.0	54.1	0.8	-0.8		0.1	P
49.0	49.2	0.8	-0.8		0.2	P
						P
44.0	44.0	0.8	-0.8	0.25	0.0	
39.0	39.1	0.8	-0.8	0.25	0.1	P
34.0	34.2	0.8	-0.8		0.2	P
29.0	29.1	0.8	-0.8		0.1	P
28.0	28.0	0.8	-0.8	0.25	0.0	P
27.0	26.9	0.8	-0.8		-0.1	P
26.0	25.9	0.8	-0.8		-0.1	P
25.0	24.9	0.8	-0.8	0.25	-0.1	P
Measured at	1 kHz					
94.0	94.0	0.8	-0.8	0.25	0.0	P
99.0	99.1	0.8	-0.8	0.25	0.1	P
104.0	104.1	0.8	-0.8	0.25	0.1	P
109.0	109.0	0.8	-0.8	0.25	0.0	P
114.0	114.0	0.8	-0.8	0.25	0.0	P
119.0	119.1	0.8	-0.8	0.25	0.1	P
124.0	124.0	0.8	-0.8		0.0	P
129.0	129.0	0.8	-0.8	0.25	0.0	P
134.0	134.1	0.8	-0.8		0.1	P
135.0	135.0	0.8	-0.8	0.25	0.0	P
136.0	136.0	0.8	-0.8	0.25	0.0	P
137.0	137.0	0.8	-0.8	0.25	0.0	P
138.0	138.0	0.8	-0.8		0.0	P
94.0	94.0	0.8	-0.8	0.25	0.0	P
89.0	89.0	0.8		0.25	0.0	P
84.0	84.0	0.8	-0.8		0.0	P
79.0	79.0	0.8	-0.8		0.0	P
74.0	74.0	0.8	-0.8		0.0	P
69.0	69.0	0.8	-0.8			
				0.25	0.0	P
64.0	64.0	0.8			0.0	P
59.0	59.0	0.8	-0.8		0.0	P
54.0		0.8	-0.8	0.25	0.0	P
49.0		0.8	-0.8		0.0	Б
44.0	44.0	0.8	-0.8	0.25	0.0	Р
39.0		0.8	-0.8		0.0	P
34.0	34.0	0.8	-0.8		0.0	P
29.0	29.0	0.8			0.0	P
28.0	28.1	0.8	-0.8	0.25	0.1	P

	Ref.			ol.	evel range Uncert.	Dev.	Result	Crause	10
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	1,000,10		
	27.0	27.0	0.8	-0.8	0.25	0.0	P		
	26.0		0.8	-0.8	0.25	0.0	P		
	ar a		0.8	-0.8	0.25	0.0	P		
Measu	ired at		2061	0.30	4, 7, 22	5.76	1.7		
	94.0	94.0	0.8	-0.8	0.25	0.0	P		
	99.0	99.0	0.8	-0.8	0.25	0.0	P		
1	104.0		0.8	-0.8	0.25	0.0	P		
	109.0	109.0	0.8	-0.8	0.25	0.0	P		
	114.0	114.0	0.8	-0.8	0.25	0.0	P		
	19.0	119.0	0.8	-0.8	0.25	0.0	P		
	24.0	124.0	0.8	-0.8	0.25	0.0	P		
	29.0	129.0	0.8	-0.8	0.25	0.0	P		
	32.9	132.9	0.8	-0.8	0.25	0.0	P		
	33.9	133.9	0.8	-0.8	0.25	0.0	P		
	34.9	134.9	0.8	-0.8	0.25	0.0	P		
	35.9	135.9	0.8	-0.8	0.25	0.0	P		
	36.9		0.8	-0.8	0.25	0.0	P		
	94.0	94.0	0.8	-0.8		0.0	P		
	89.0	89.0	0.8	-0.8	0.25	0.0	P		
	84.0	84.0	0.8	-0.8	0.25	0.0	Р		
	79.0	79.0	0.8	-0.8	0.25	0.0	P		
	74.0	74.0	0.8	-0.8		0.0	P		
	69.0	69.0	0.8	-0.8	0.25	0.0	P		
	64.0	64.0	0.8	-0.8	0.25	0.0	P		
	59.0	59.0	0.8	-0.8	0.25	0.0	P		
	54.0	54.0	0.8	-0.8	0.25	0.0	P		
	49.0	49.0	0.8	-0.8	0.25	0.0	P		
	44.0	44.0	0.8	-0.8	0.25	0.0	P		
	39.0	39.0	0.8	-0.8	0.25	0.0	P		
	34.0	34.0	0.8	-0.8	0.25	0.0	P		
	29.0	29.0	0.8	-0.8	0.25	0.0	P		
	28.0	28.0	0.8	-0.8	0.25	0.0	P		
	27.0	27.0	0.8	-0.8	0.25	0.0	P		
	26.0	26.0	0.8		0.25	0.0	P		
	25.0	24.9	0.8	-0.8	0.25	-0.1	P		
	Passed								

Toneburst response - IEC 61672-3 Ed.2.0 Clause 18

Burs	t type	Ref.	Measured	T	ol.	Uncert.	Dev.	Result
		(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast	200 mSec	135.0	135.0	0.5	-0.5	0.3	0.0	P
Fast	2.0 mSec	118.0	118.0	1.0	-1.5	0.3	0.0	P
Fast	0.25 mSec	109.0	108.9	1.0	-3.0	0.3	-0.1	P
Slow	200 mSec	128.6	128.6	0.5	-0.5	0.3	0.0	P
Slow	2.0 mSec	109.0	109.0	1.0	-3.0	0.3	0.0	P
SEL	200 mSec	129.0	129.0	0.5	-0.5	0.3	0.0	P
SEL	2.0 mSec	109.0	109.0	1.0	-1.5	0.3	0.0	P
SEL	0.25 mSec	100.0	99.9	1.0	-3.0	0.3	-0.1	P
Test	Passed							

Peak C sound level - IEC 61672-3 Ed.2.0 Clause 19

Pulse	Pulse	Ref.	Ref.	Measured	Tol.	Uncert.	Dev.	Result
Type	Freq.	RMS	Peak	Value				
4.24.5	(Hz)	(dB)	(dB)	(dB)	(+/-dB)	(dB)	(dB)	
1 cycle	8 k	130.0	133.4	133.0	2.0	0.35	-0.4	P
Pos 1/2 cycle	500	133.0	135.4	135.1	1.0	0.35	-0.3	P
Neg 1/2 cycle	500	133.0	135.4	135.1	1.0	0.35	-0.3	P
Test Passed								

Overload indication - IEC 61672-3 Ed.2.0 Clause 20

	Measured (dB)	To1.	Uncert.	Result
Level difference of positive and negative pulses Positive 1/2 cycle 4 kHz. Overload occurred at: Negative 1/2 cycle 4 kHz. Overload occurred at:	:: 0.1 139.4	1.5	0.25	P
Test Passed				

High level stability test - IEC 61672-3 Ed.2.0 Clause 21

Test signal:	Sine wa	ve at 1	kHz		
Initial	Final	Diff.	Tol.	Uncert.	Result
level	level		value		
(dB)	(dB)	(dB)	(dB)	(dB)	
137.0	137.0	0.0	0.1	0.1	P
Test Passed					

Long term stability test - IEC 61672-3 Ed.2.0 Clause 15

Test signal: Time inteval			Difference	Tolerence	Result
(mm:SS)	(dB)	(dB)	(dB)	(dB)	
25:15	94.0	94.0	0.0	0.1	P
Test Passed					

Filter Test 1/1octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3

Test 1/1 oct	ave filter X	= 3 fexact=	7943.282Hz	class 1
Nominal	Measured	LoLim	Hilim	Result
f[Hz]	L[dB]	[dB]	[dB]	[P/F]
501.187	30.2	0.0	58.0	P
1000.00	30.3	0.0	67.0	P
1995.26	41.6	0.0	86.0	P
3981.07	88.2	0.0	110.5	P
5623.41	124.8	123.0	126.0	P
6130.56	127.9	126.7	128.3	P

Filter Test 1/3octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3

Test 1/3	octave filter	X= 12 fexact=	=15848.932H	z class	1
Nomina		LoLim		Result	
f[Hz		[dB]		[P/F]	
2939.3		0.0	58.0	P	
5190.16			67.0	P	
8422.54	79.6	0.0		P	
	105.1			P	
14125.4	124.3		126.0	P	
14574.3	127.2	126.7	128.3	P P P P P P P P P	
15012.0	127.9	127.4	128.3	P	
15437.2	128.0	127.6	128.3	P	
15848.9	128.0	127.7	128.3	P	
16271.7		127.6	128.3	P	
16732.6	127.9	127.4	128.3	P	
17235.0	127.1	126.7	128.3	P	
17782.8	124.0	123.0	126.0	P	
20514.4	104.8	0.0	110.5	P	
29823.4	30.8	0.0	86.0	P	
48397.1	32.7	0.0	67.0	P	
85456.6	39.2	0.0	58.0	P	
Test 1/3	octave filter	X= 13 fexact=	19952.623Hz	class	1

Test Passed

Nominal	Measured	LoLim	HiLim	Result
f[Hz]	L[dB]	[dB]	[dB]	[P/F]
3700.45	41.4	0.0	58.0	P
6534.02	57.6	0.0	67.0	
10603.4	77.4	0.0	86.0	P
15414.9	105.1	0.0	110.5	P
17782.8	125.2	123.0	126.0	P
18348.0	127.4	126.7	128.3	P
18898.9	127.9	127.4	128.3	P
19434.2	128.0	127.6	128.3	P
19952.6	128.0	127.7	128.3	P
20484.8	128.0	127.6	128.3	P
21065.1	128.0	127.4	128.3	P
21697.6	127.2	126.7	128.3	P
22387.2	123.6	123.0	126.0	P
25826.2	86.8	0.0	110.5	P
37545.4	36.1	0.0	86.0	P
60928.4	35.2	0.0	67.0	P
107584	35.1	0.0	58.0	P
Test Passed				
RIONL52.ini				
RIONL52.ini				

Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13

A-Weigh	ted re	esults:		field								
Frequer	icy S	SLM	Micro	ophone	Case	Refl.	Wind	Screen	Uncert	Tol	Result	
	Val	U	Val	U	Val	U	Val					
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	-0.1	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	-0.1	P
125 Hz	0.0	0.2	0.1	0.1			0.0	0.1	0.2	+-1.0	0.1	P
250 Hz	-0.1	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	-0.1	P
500 Hz	0.0	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.0	P
1 kHz	0.0	0.2	0.0	0.1			0.1	0.1	0.2	+-0.7	0.1	P
2 kHz	0.0	0.2	0.0	0.2			0.3	0.2	0.4	+-1.0	0.3	P
4 kHz	0.0	0.2	0.1	0.2			0.3	0.2	0.4	+-1.0	0.4	P
8 kHz	0.1	0.2	0.2	0.4			0.0	0.3	0.5 +	1.5/-2.	5 0.3	P
16 kHz	-1.2	0.2	0.0	0.7			-0.7	0.4	0.8 +	2.5/-16	.0-1.9	P
C-Weigh	ted re	sults:	Free	field								
Frequen		SLM		ophone	Case	Refl.	Wind	Screen	Uncert	Tol	Result	
200 4 2 7 14 4	Val	U	Val	U	Val.	U	Val	U				
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	0.0	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.0	P
125 Hz	0.1	0.2	0.1	0.1			0.0	0.1	0.2	+-1.0	0.2	P
250 Hz	0.0	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.0	P
500 Hz	0.1	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.1	P
1 kHz	0.0	0.2	0.0	0.1			0.1	0.1	0.2	+-0.7	0.1	P
2 kHz	0.0	0.2	0.0	0.2			0.3	0.2	0.4	+-1.0	0.3	P
4 kHz	0.0	0.2	0.1	0.2			0.3	0.2	0.4	+-1.0	0.4	P
8 kHz	0.1	0.2	0.2	0.4			0.0	0.3	0.5 +	1.5/-2.	5 0.3	P
16 kHz	-1.2	0.2	0.0	0.7			-0.7	0.4	0.8 +2	2.5/-16	.0-1.9	P
Z-Weigh	ted re	sults:	Free	field								
Frequen	cy S	LM	Micro	phone	Case	Refl.	Wind	Screen	Uncert	Tol	Result	
	Val.	U	Val	U	Va1	U	Val.	Ü				
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	-0.1	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	-0.1	P

Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13

125 Hz	0.0	0.2	0.1	0.1	0.0	0.1	0.2	+-1.0	0.1	P
250 Hz	0.0	0.2	0.0	0.1	0.0	0.1	0.2	+-1.0	0.0	P
500 Hz	0.0	0.2	0.0	0.1	0.0	0.1	0.2	+-1.0	0.0	P
1 kHz	0.0	0.2	0.0	0.1	0.1	0.1	0.2	+-0.7	0.1	P
2 kHz	0.0	0.2	0.0	0.2	0.3	0.2	0.4	+-1.0	0.3	P
4 kHz	0.0	0.2	0.1	0.2	0.3	0.2	0.4	+-1.0	0.4	P
8 kHz	0.0	0.2	0.2	0.4	0.0	0.3	0.5	+1.5/-2.5	0.2	P
16 kHz	0.0	0.2	0.0	0.7	-0.7	0.4	0.8	+2.5/-16.0	-0.7	P

The actual frequency response of Riom $\!\!\!/$ UC-59 07651 has been used for the calculations.

Test Passed

The overall frequency response of the sound level meter, typical wind screen response and microphone response has shown to conform with the requirements in IEC 61672-3 for a class 1 sound level meter. RIONL52.ini

Scantek, Inc.

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.36825

Instrument:

Model:

UC-59

Manufacturer:

Rion 07651

Serial number:

Composed of:

Microphone

In tolerance:

Date Calibrated: 8/17/2016 Cal Due: 8/17/2017

Status:

Received Sent X X

Out of tolerance:

See comments:

Contains non-accredited tests: __Yes X No

Customer:

Tel/Fax:

Paul Carpenter Associates, Inc.

973-822-8221 x21/-833-9221

Address:

7 Columbia Turnpike, Suite 101

Florham Park, NJ 07932

Tested in accordance with the following procedures and standards:

Calibration of Measurement Microphones, Scantek, Inc., Rev. 2/25/2015

Instrumentation used for calibration: N-1504 Norsonic Test System:

Instrument - Manufacturer	Description	C/NI	Cal. Date	Traceability evidence	Cal. Due	
instrument - Manufacturer	Description	S/N	Cal. Date	Cal. Lab / Accreditation	Cal. Due	
483B-Norsonic	SME Cal Unit	31061	Jul 27, 2016	Scantek, Inc./ NVLAP	Jul 27, 2017	
DS-360-SRS	Function Generator	88077	Sep 9, 2014	ACR Env./ A2LA	Sep 9, 2016	
34401A-Agilent Technologies	Digital Voltmeter	MY47011118	Sep 24, 2015	ACR Env./ A2LA	Sep 24, 2016	
HM30-Thommen	Meteo Station	1040170/39633	Oct 23, 2015	ACR Env./ A2LA	Oct 23, 2016	
PC Program 1017 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.		
1253-Norsonic	Calibrator	28326	Nov 10, 2015	Scantek, Inc./ NVLAP	Nov 10, 2016	
1203-Norsonic	Preamplifier	92268	Oct 14, 2015	Scantek, Inc./ NVLAP	Oct 14, 2016	
4180-Brüel&Kjær	Microphone	2246115	Oct 26, 2015	NPL-UK / UKAS	Oct 26, 2017	

Instrumentation and test results are traceable to SI - BIPM through standards maintained by NPL (UK) and NIST (USA)

Calibrated by:	Jeremy Gotwalt	Authorized signatory:	Valentin/Buzduga
Signature	Mark & Latins	Signature	1
Date	8/17/16	Date	8/18/2016

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2016\Rion59_07651_M1.doc

Page 1 of 2

Results summary: Device was tested and complies with following clauses of mentioned specifications:

	MET ^{2,3}	NOT MET	NOT TESTED	MEASUREMENT EXPANDED UNCERTAINTY (coverage factor 2)	
Open circuit sen	sitivity (insert voltage method, 250 Hz)	X			See below
	Actuator response	х			63 – 200Hz: 0.3 dB 200 – 8000 Hz: 0.2 dB 8 – 10 kHz: 0.5 dB 10 – 20 kHz: 0.7 dB 20 – 50 kHz: 0.9 dB 50 – 100 kHz: 1.2 dB
Frequency response	FF/Diffuse field responses	х			63 – 200Hz: 0.3 dB 200 – 4000 Hz: 0.2 dB 4 – 10 kHz: 0.6 dB 10 – 20 kHz: 0.9 dB 20 – 50 kHz: 2.2 dB 50 – 100 kHz: 4.4 dB
	Scantek, Inc. acoustical method			×	31.5 – 125 Hz: 0.16 dB 250, 1000 Hz: 0.12 dB 2 – 8 kHz: 0.8 dB 12.5 – 16 kHz: 2.4 dB

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

Note: The free field/diffuse field characteristics were calculated based on the measured actuator response and adjustment coefficients as provided by the manufacturer. The uncertainties reported for these characteristics may include assumed uncertainty components for the adjustment coefficients.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
22.4 ± 1.0	100.42 ± 0.020	58.9 ± 2.0

Main measured parameters:

Tone frequency (Hz)	Measured ⁴ /Acceptable Open circuit sensitivity (dB re 1V/Pa)	Sensitivity (mV/Pa)
250	-26.82 ± 0.12/ -27.0 ±2.0	45.60

⁴ The reported expanded uncertainty is calculated with a coverage factor k=2.00

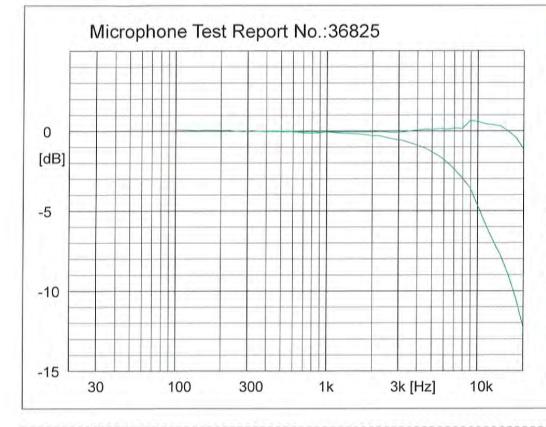
Tests made with following attachments to instrument and auxiliary devices:

Protection grid mounted for sensitivity measurements						
Actuator type: G.R.A.S. RA0014						

Measured Data: Found on Microphone Test Report # 36825 of one page.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com


Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2016\Rion59_07651_M1.doc

² Parameters are certified at actual environmental conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Rion Type: UC-59

Serial no: 07651

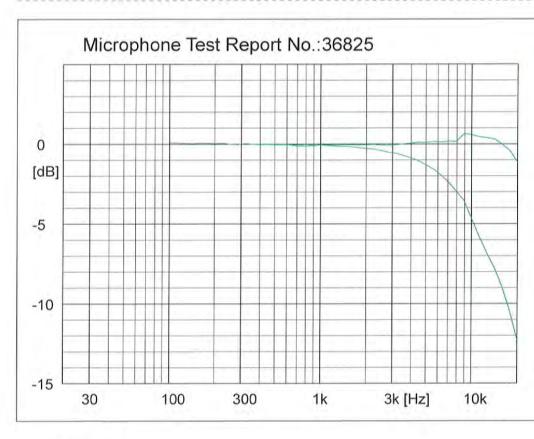
Sensitivity: 45.60 mV/Pa -26.82 ±0.12 dB re. 1 V/Pa

Date: 8/17/2016

Signature:

Measurement conditions:

Polarisation voltage: Pressure:


100.42 ±0.02 kPa Temperature: 22.4 ±1.0 °C 58.9 ±2.0 %RH Relative humidity:

Results are normalized to the measurement conditions.

Free field response Actuator response

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Rion Type: UC-59

Serial no: 07651

Sensitivity: 45.60 mV/Pa -26.82 ±0.12 dB re. 1 V/Pa

Date: 8/17/2016

Signature:

Measurement conditions Polarisation voltage:

Pressure: Temperature:

22.4 ±1.0 °C 58.9 ±2.0 %RH Relative humidity:

100.42 ±0.02 kPa

Results are normalized to the measurement conditions.

Free field response Actuator response

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Comment: (Z:\Calibration Lab\Mic 2016\Rion59_07651_M1.nmf)

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.36054

Instrument:

Sound Level Meter

Model:

NL52 Rion

Manufacturer:

Serial number:

Tested with:

012343610

Microphone UC-59 s/n 07652

Preamplifier NH25 s/n 43639

Type (class): Customer: Tel/Fax:

Paul Carpenter Associates, Inc. 973-822-8221 x21 / 973-833-9221 Date Calibrated:4/22/2016 Cal Due: 4/22/2017

Status: In tolerance: Received X

Out of tolerance:

See comments:

Contains non-accredited tests: Yes X No Calibration service: ___ Basic X Standard

Sent

X

Address:

23 Vreeland Road, Suite 204,

Florham Park, NJ 07932

Tested in accordance with the following procedures and standards:

Calibration of Sound Level Meters, Scantek Inc., Rev. 6/26/2015 SLM & Dosimeters - Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

		c /n:	6-1 6-1-	Traceability evidence	010	
Instrument - Manufacturer	Description	S/N	Cal. Date	Cal. Lab / Accreditation	Cal. Due	
483B-Norsonic	SME Cal Unit	31052	Oct 23, 2015	Scantek, Inc./ NVLAP	Oct 23, 2016	
DS-360-SRS	Function Generator	33584	Oct 20, 2015	ACR Env./ A2LA	Oct 20, 2017	
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Oct 6, 2015	ACR Env. / A2LA	Oct 6, 2016	
HM30-Thommen	Meteo Station	1040170/39633	Oct 23, 2015	ACR Env./ A2LA	Oct 23, 2016	
PC Program 1019 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	4	
1251-Norsonic	Calibrator	30878	Nov 10, 2015	Scantek, Inc./ NVLAP	Nov 10, 2016	

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)	
23.9	99.81	50.7	

Calibrated by:	/ Lydon Dawkins	Authorized signatory:	Valentin Buzduga		
Signature	Liston Dankers	Signature	1		
Date	4/22/2016	Date	4/22/2016		

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2016\RIONL52_012343610_M1.doc

Page 1 of 2

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB
INDICATION AT THE CALIBRATION CHECK FREQUENCY - IEC61672-3 ED.2 CLAUSE 10	Passed	0.15
SELF-GENERATED NOISE - IEC 61672-3 ED.2 CLAUSE 11	Passed	0.30
FREQUENCY WEIGHTINGS: A NETWORK ~ IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: C NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: Z NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY AND TIME WEIGHTINGS AT 1 KHZ IEC 61672-3 ED.2.0 CLAUSE 14	Passed	0.20
LEVEL LINEARITY ON THE REFERENCE LEVEL RANGE - IEC 61672-3 ED.2 CLAUSE 16	Passed	0.25
TONEBURST RESPONSE - IEC 61672-3 ED.2.0 CLAUSE 18	Passed	0.30
PEAK C SOUND LEVEL - IEC 61672-3 ED.2.0 CLAUSE 19	Passed	0.35
OVERLOAD INDICATION - IEC 61672-3 ED.2.0 CLAUSE 20	Passed	0.25
HIGH LEVEL STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 21	Passed	0.1
LONG TERM STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 15	Passed	0.1
FILTER TEST 1/10CTAVE: RELATIVE ATTENUATION - IEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
FILTER TEST 1/3OCTAVE: RELATIVE ATTENUATION - IEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
COMBINED ELECTRICAL AND ACOUSTICAL TEST - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	See test report

- 1 The results of this calibration apply only to the instrument type with serial number identified in this report.
- ² Parameters are certified at actual environmental conditions.
- 3 The tests marked with (*) are not covered by the current NVLAP accreditation.

Comments: The instrument was tested after the case was repair at Scantek.

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2, to demonstrate that the model of sound level meter fully conforms to the requirements in the IEC 61672-2, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger.

Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

Microphone:	Rion UC-59 s/n 07652 for acoustical test	
Preamplifier:	Rion NH25 s/n 43639 for all tests	
Other: line adap	otor ADP005 (18pF) for electrical tests	
Accompanying	acoustical calibrator: none	
Windscreen:	none	

Measured Data: in Test Report # 36054 of 9 +1 pages.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2016\RIONL52_012343610_M1.doc

Ph/Fax: 410-290-7726/ -9167

callab@scantekinc.com

Summary of Test Report No.:36054

Rion Type: NL52 Serial no: 012343610

Customer:

Paul Carpenter Associates, Inc.

Address:

23 Vreeland Road, Suite 204, Florham Park, NJ 07932

Contact Person:

Bryan Fuerte

Phone No.: Fax No.:

973-822-8221 x21 973-833-9221

Instrument software version:

NL-52 v1.5; NX-42EX v1.5; NX-42RT v1.5

Microphone:

Rion

Type: UC-59

Serial no: 07652

Sens:-26.64dB

Preamplifier

Rion

Type: NH25

Serial no: 43639

Measurement Results:

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10	Passed
Self-generated noise - IEC 61672-3 Ed.2 Clause 11	Passed
Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14	Passed
Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16	Passed
Toneburst response - IEC 61672-3 Ed.2.0 Clause 18	Passed
Peak C sound level - IEC 61672-3 Ed.2.0 Clause 19	Passed
Overload indication - IEC 61672-3 Ed.2.0 Clause 20	Passed
High level stability test - IEC 61672-3 Ed.2.0 Clause 21	Passed
Long term stability test - IEC 61672-3 Ed.2.0 Clause 15	Passed
Filter Test 1/1 octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3	Passed
Filter Test 1/3octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3	Passed
Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13	Passed

Environmental conditions:

Pressure:

Temperature:

Relative humidity:

99.81

23.9

50.7

Date of calibration: 4/22/2016 Date of issue: 4/22/2016 Supervisor: Valentin Buzduga Measurements performed by:

Lydon Dawkins

Software version: 6.1 T

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Test Report No.:36054

Manufacturer: Rion Instrument type: NL52

Serial no: 012343610

Customer: Paul Carpenter Associates, Inc.

Department:

Order No:

Contact Person: Bryan Fuerte

Address: 23 Vreeland Road, Suite 204, Florham Park, NJ 07932

Environmental conditions:

Pressure: 99.81
Temperature: 23.9
Relative humidity: 50.7

Supervisor Valentin Buzduga Engineer Lydon Dawkins

Date: 4/22/2016

Measurement Results:

Test Passed

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10

Reference Calibrator: WSC4 - NOR1251-30878
Reference calibrator level: 114.06
Before calibration:
 Environmental corrections: 0.00
 Other corrections: -0.02
 Notional level: 114.04
Reference calibrator level before calibration: 114.2
After calibration:
 Environmental corrections: 0.00
 Other corrections: -0.02
 Notional level: 114.04
Reference calibrator level after calibration: 114.0
Associated Calibrator: - Associated calibrator level: Not calibrated

Self-generated noise - IEC 61672-3 Ed.2 Clause 11

Network	Level (dB)	Max (dB)	Uncert. (dB)	Result	Comment
A	10.4	17.0	0.3	P	Equivalent capacity
C	14.4	25.0	0.3	P	Equivalent capacity
Z	19.9	30.0	0.3	P	Equivalent capacity
Test Passed					

Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	T	ol.	Uncert.	Dev.	Result	
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)		
63.1	93.0	92.9	1.0	-1.0	0.2	-0.1	P	
125.9	93.0	92.9	1.0	-1.0	0.2	-0.1	P	
251.2	93.0	92.9	1.0	-1.0	0.2	-0.1	P	
501.2	93.0	93.0	1.0	-1.0	0.2	0.0	P	
1000.0	93.0	93.0	0.7	-0.7	0.2	0.0	P	
1995.3	93.0	93.0	1.0	-1.0	0.2	0.0	P	
3981.1	93.0	93.0	1.0	-1.0	0.2	0.0	P	
7943.3	93.0	93.1	1.5	-2.5	0.2	0.1	P	
15848.9	93.0	91.8	2.5	-16.0	0.2	-1.2	P	
Test Passed								

Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	Ţ	ol,	Uncert.	Dev.	Result
	Level	Value				1.00	
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	93.0	92.9	1.0	-1.0	0.2	-0.1	P
125.9	93.0	93.0	1.0	-1.0	0.2	0.0	P
251.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
501.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
1000.0	93.0	93.0	0.7	-0.7	0.2	0.0	P
1995.3	93.0	93.0	1.0	-1.0	0.2	0.0	P
3981.1	93.0	93.0	1.0	-1.0	0.2	0.0	P
7943.3	93.0	93.1	1.5	-2.5	0.2	0.1	P
15848.9	93.0	91.8	2.5	-16.0	0.2	-1.2	P
Test Passed							

Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	T	01.	Uncert.	Dev.	Result
20. (0)	Level	Value	12.0004	1 (0 1)	1 1400 00	na 400 h	
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	93.0	93.0	1.0	-1.0	0.2	0.0	P
125.9	93.0	93.0	1.0	-1.0	0.2	0.0	P
251.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
501.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
1000.0	93.0	93.0	0.7	-0.7	0.2	0.0	P
1995.3	93.0	93.0	1.0	-1.0	0.2	0.0	P
3981.1	93.0	93.0	1.0	-1.0	0.2	0.0	P
7943.3	93.0	93.0	1.5	-2.5	0.2	0.0	P
15848.9	93.0	93.0	2.5	-16.0	0.2	0.0	P
Test Passed							

Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14

Weigh	tings	Ref.	Measured	To	01.	Uncert.	Dev.	Result
Time	Netw	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
Fast	C	94.0	94.0	0.1	-0.1	0.2	0.0	P
Fast	Z	94.0	94.0	0.1	-0.1	0.2	0.0	P
Slow	A	94.0	94.0	0.1	-0.1	0.2	0.0	Б
Leq	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
SEL	A	104.0	104.0	0.1	-0.1	0.2	0.0	P
Test	Passed							

Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16

Ref.	(dB)	(dB)	ol. (dB)	Uncert. (dB)	Dev.	Result
Full scale			a CDT			
		ents an	ce SPL	measurement	S	
Measured at		0.0	0.0	0.0	0.0	D
84.0	84.0	0.8	-0.8	0.0	0.0	P
89.0	89.0	0.8	-0.8	0.0	0.0	P
94.6	94.6	0.8	-0.8	0.0	0.0	P
95.6	95.6	0.8	-0.8	0.0	0.0	P
96.6	96.6	0.8	-0.8	0.0	0.0	P
97.6	97.7	0.8	-0.8	0.0	0.1	P
98.6	98.6	0.8	-0.8	0.0	0.0	P
84.0	84.0	0.8	-0.8	0.0	0.0	P
79.0	79.1	0.8	-0.8	0.0	0.1	P
74.0	74.2	0.8	-0.8	0.0	0.2	P
69.0	69.2	0.8	-0.8	0.0	0.2	P
64.0	64.2	0.8	-0.8	0.0	0.2	P
59.0	59.2	0.8	-0.8	0.0	0.2	P
54.0	54.0	0.8	-0.8	0.0	0.0	P
49.0	49.0	0.8	-0.8	0.0	0.0	P
44.0	44.0	0.8	-0.8	0.0	0.0	P
39.0	39.0	0.8	-0.8	0.0	0.0	P
34.0	34.0	0.8	-0.8	0.0	0.0	P
29.0	29.0	0.8	-0.8	0.0	0.0	P
28,0	27.9	0.8	-0.8	0.0	-0.1	P
27.0	26.9	0.8	-0.8	0.0	-0.1	P
26.0	25.9	0.8	-0.8	0.0	-0.1	P
25.0	24.8	0.8	-0.8	0.0	-0.2	P
Measured at	1 kHz	5 6		0.0	0 0	4
94.0	94.0	0.8	-0.8	0.0	0.0	P
99.0	99.0		-0.8	0.0	0.0	P
104.0	104.0		-0.8	0.0	0.0	P
109.0	109.0		-0.8	0.0	0.0	P
114.0	114.0		-0.8	0.0	0.0	P
119.0	119.0	0.8	-0.8	0.0	0.0	P
124.0	124.0	0.8	-0.8	0.0	0.0	P
129.0	129.0	0.8	-0.8	0.0	0.0	P
134.0	134.0	0.8	-0.8	0.0	0.0	P
135.0	135.0	0.8	-0.8	0.0	0.0	P
136.0	136.0	0.8	-0.8	0.0	0.0	P
137.0	137.0	0.8	-0.8	0.0	0.0	P
138.0	138.0	0.8	-0.8			P P
94.0	94.0	0.8	-0.8	0.0	0.0	P
89.0	89.0	0.8		0.0		P
84.0	84.0	8.0	-0.8	0.0	0.0	P
79.0	79.0	0.8	-0.8		0.0	P
74.0	74.0 69.0	0.8	-0.8	0.0	0.0	P
69.0		0.8				P
64.0	64.0	0.8	-0.8 -0.8	0.0	0.0	P
59.0	59.0	0.8			0.0	P
54.0	54.0	0.8	-0.8	0.0		P
49.0	49.0	0.8	-0.8	0.0	0.0	P
	39.0	0.8	-0.8	0.0	0.0	P
39.0 34.0	34.0	0.8	-0.8	0.0	0.0	P
29.0	28.9	0.8	-0.8	0.0	-0.1	P
28.0	28.0	0.8	-0.8	0.0	0.0	P
20.0	20.0	0.0	-0.0	W . W	0.0	

Leve	l linea Ref.	rity on the Measured		ence lev	vel range - Uncert.	IEC 616 Dev.	72-3 Ed.2 Result	Clause	16
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)			
	27.0	27.0	0.8	-0.8	0.0	0.0	P		
	26.0	26.0	0.8	-0.8	0.0	0.0	P		
	25.0	24.9	0.8	-0.8	0.0	-0.1	P		
Meas	ured at	8 kHz							
	94.0	94.0	0.8	-0.8	0.0	0.0	P		
	99.0	99.0	0.8	-0.8	0.0	0.0	P		
	104.0	104.0	0.8	-0.8	0.0	0.0	P		
	109.0	109.0	0.8	-0.8	0.0	0.0	P		
	114.0	114.0	0.8	-0.8	0.0	0.0	P		
	119.0	119.0	0.8	-0.8	0.0	0.0	P		
	124.0	124.0	0.8	-0.8	0.0	0.0	P		
	129.0	129.0	0.8	-0.8	0.0	0.0	P		
	132.9	132.9	0.8	-0.8	0.0	0.0	P		
	133.9	133,9	0.8	-0.8	0.0	0.0	P		
	134.9	134.9	0.8	-0.8	0.0	0.0	P		
	135.9	135.9	0.8	-0.8	0.0	0.0	P		
	136.9	136.9	0.8	-0.8	0.0	0.0	P		
	94.0	94.0	0.8	-0.8	0.0	0.0	P		
	89.0	89.0	0.8	-0.8	0.0	0.0	P		
	84.0	84.0	0.8	-0.8	0.0	0.0	P		
	79.0	79.0	0.8	-0.8	0.0	0.0	P		
	74.0	74.0	0.8	-0.8	0.0	0.0	P		
	69.0	69.0	0.8	-0.8	0.0	0.0	P		
	64.0	64.0	0.8	-0.8	0.0	0.0	P		
	59.0	59.0	0.8	-0.8	0.0	0.0	Р		
	54.0	53.9	0.8	-0.8	0.0	-0.1	P		
	49.0	49.0	0.8	-0.8	0.0	0.0	P		
	44.0	44.0	0.8	-0.8	0.0	0.0	P		
	39.0	39.0	0.8	-0.8	0.0	0.0	P		
	34.0	34.0	0.8	-0.8	0.0	0.0	P		
	29.0	28.9	0.8	-0.8	0.0	-0.1	P		
	28.0	28.0	0.8	-0.8	0.0	0.0	P		
	27.0	27.0	0.8	-0.8	0.0	0.0	P		
	26.0	25.9	0.8	-0.8	0.0	-0.1	P		
	25.0	25.0	0.8	-0.8	0.0	0.0	P		
Test	Passed								

Toneburst response - IEC 61672-3 Ed.2.0 Clause 18

Burst	t typ	е	Ref.	Measured	T	ol.	Uncert.	Dev.	Result
			(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast	200	mSec	135.0	135.0	0.5	-0.5	0.3	0.0	P
Fast	2.0	mSec	118.0	117.9	1.0	-1.5	0.3	-0.1	P
Fast	0.25	mSec	109.0	108.8	1.0	-3.0	0.3	-0.2	P
Slow	200	mSec	128.6	128.5	0.5	-0.5	0.3	-0.1	P
Slow	2.0	mSec	109.0	108.9	1.0	-3.0	0.3	-0.1	P
SEL	200	mSec	129.0	128.9	0.5	-0.5	0.3	-0.1	P
SEL	2.0	mSec	109.0	109.0	1.0	-1.5	0.3	0.0	P
SEL	0.25	mSec	100.0	99.8	1.0	-3.0	0.3	-0.2	P
Test	Pass	ed							

Peak C sound level - IEC 61672-3 Ed.2.0 Clause 19

Pulse	Pulse	Ref.	Ref.	Measured	Tol.	Uncert.	Dev.	Result
Type	Freq.	RMS	Peak	Value				
	(Hz)	(dB)	(dB)	(dB)	(+/-dB)	(dB)	(dB)	
1 cycle	8 k	130.0	133.4	132.5	2.0	0.35	-0.9	P
Pos 1/2 cycle	500	133.0	135.4	135.0	1.0	0.35	-0.4	P
Neg 1/2 cycle		133.0	135.4	135.0	1.0	0.35	-0.4	P
Test Passed								

Overload indication - IEC 61672-3 Ed.2.0 Clause 20

	Measured (dB)	Tol. (+/-dB)	Uncert. (dB)	Result
Level difference of positive and negative pulse Positive 1/2 cycle 4 kHz. Overload occurred at: Negative 1/2 cycle 4 kHz. Overload occurred at: Test Passed	139.6	1.5	0.25	P

High level stability test - IEC 61672-3 Ed.2.0 Clause 21

Test signal:	Sine wa	ve at 1	kHz		
Initial	Final	Diff.	Tol.	Uncert.	Result
level	level		value		
(dB)	(dB)	(dB)	(dB)	(dB)	
137.0	137.0	0.0	0.1	0.10	P
Test Passed					

Long term stability test - IEC 61672-3 Ed.2.0 Clause 15

Test signal: Time inteval			Difference	Tolerence	Result
(mm; SS)	(dB)	(dB)	(dB)	(dB)	
25:11 Test Passed	93.9	94.0	0.1	0.1	P
RIONL52.ini					

Filter Test 1/1octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3

Test 1/1 oct	ave filter X	= 3 fexact=	7943.282Hz	class 1
Nominal	Measured	LoLim	Hilim	Result
f[Hz]	L[dB]	[dB]	[dB]	[P/F]
501.187	30.2	0.0	58.0	P
1000.00	30.0	0.0	67.0	P
1995.26	41.6	0.0	86.0	P
3981.07	88.2	0.0	110.5	P
5623.41	124.8	123.0	126.0	P

Filter Test 1/3octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3

Test 1/3 octave filter X= 12 fexact=15848.932Hz class 1 Nominal Measured LoLim HiLim Result [P/F] f[Hz] L[dB] [dB] [dB] 0.0 2939.37 43.9 58.0 P 0.0 67.0 5190.16 60.8 P 79.5 86.0 0.0 8422.54 0.0 110.5 12244.5 105.1 126.0 128.3 124.2 123.0 14125.4 126.7 127.2 14574.3 126.7 127.4 127.6 127.7 127.6 127.4 126.7 127.9 128.3 128.3 15012.0 128.0 15437.2 128.3 128.0 15848.9 127.9 128.3 16271.7 127.9 128.3 P 16732.6 127.1 128.3 P 17235.0 123.9 104.7 126.0 P 17782.8 110.5 0.0 P 20514.4 30.9 0.0 P 29823.4 86.0 67.0 48397.1 31.7 0.0 P 39.5 58.0 P 85456.6 0.0

Test Passed

Test 1/3 oct	ave filter X	= 13 fexact	=19952.62	3Hz class	1
Nominal	Measured	LoLim	HiLim	Result	
f[Hz]	L[dB]	[dB]	[dB]	[P/F]	
3700.45	41.4	0.0	58.0	P	
6534.02	57.6	0.0	67.0	P	
10603.4	77.3	0.0	86.0	P	
15414.9	105.1	0.0	110.5	P	
17782.8	125.2	123.0	126.0	P P P P P P P P P P P P P P P P P P P	
18348.0	127.4	126.7	128.3	P	
18898.9	127.9	127.4	128.3	P	
19434.2	128.0	127.6	128.3	P	
19952.6	127.9	127.7	128.3	P	
20484.8	128.0	127.6	128.3	P	
21065.1	127.9	127.4	128.3	P	
21697.6	127.2	126.7	128.3	P	
22387.2	123.6	123.0	126.0	P	
25826.2	86.8	0.0	110.5	P	
37545.4	35.6	0.0	86.0	P	
60928.4	35.3	0.0	67.0	P	
107584	35.1	0.0	58.0	P	
Test Passed					

Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13

A-Weigh			La Salar Colonia	446,440,574,440,575								
Frequen				and the second second				Screen	Uncert	Tol	Result	
	Val	U	Val	U	Val	U	Val					
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	-0.1	0.2	0.1	0.1	-0.1	0.3			0.4	+-1.0	-0.1	P
125 Hz	-0.1	0.2	0.1	0.1	0.0	0.3			0.4	+-1.0	0.0	P
250 Hz	-0.1	0.2	0.0	0.1	0.0	0.2			0.3	+-1.0	-0.1	P
500 Hz	0.0	0.2	-0.1	0.1	0.1	0.2			0.3	+-1.0	0.0	P
1 kHz	0.0	0.2	-0.1	0.1	0.0	0.2			0.3	+-0.7	-0.1	P
2 kHz	0.0	0.2	-0.1	0.2	0.0	0.3			0.4	+-1.0	-0.1	P
4 kHz	0.0	0.2	0.0	0.2	-0.1	0.4			0.5	+-1.0	-0.1	P
8 kHz	0.1	0.2	-0.1	0.4	0.0	0.4			0.6 +	1.5/-2.	5 0.0	P
16 kHz	-1.2	0.2	-0.5	0.7	-0.2	0.6			0.9 +	2.5/-16	.0-1.9	P
C-Weigh	ted re	sults:		field								
Frequen	cy S	LM		ophone	Case	Refl.	Wind	Screen	Uncert	Tol	Result	
	Val	U	Va1	U	Val	U	Val	U				
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	-0.1	0.2	0.1	0.1	-0.1	0.3	1007.7	13744	0.4	+-1.0	-0.1	P
125 Hz	0.0	0.2	0.1	0.1	0.0	0.3			0.4	+-1.0	0.1	P
250 Hz	0.0	0.2	0.0	0.1	0.0	0.2			0.3	+-1.0	0.0	P
500 Hz	0.0	0.2	-0.1	0.1	0.1	0.2			0.3	+-1.0	0.0	P
1 kHz	0.0	0.2	-0.1	0.1	0.0	0.2			0.3	+-0.7	-0.1	P
2 kHz	0.0	0.2	-0.1	0.2	0.0	0.3			0.4	+-1.0	-0.1	P
4 kHz	0.0	0.2	0.0	0.2	-0.1	0.4			0.5	+-1.0	-0.1	P
8 kHz	0.1	0.2	-0.1	0.4	0.0	0.4				1.5/-2.		P
16 kHz	-1.2	0.2	-0.5	0.7	-0.2	0.6				2.5/-16		P
Z-Weigh				field							42	
Frequen				ophone	Case	Refl.	Wind	Screen	Uncert	Tol	Result	
	Val	U	Val	U	Val	U	Val	U				
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	0.0	0.2	0.1	0.1	-0.1	0.3	1		0.4	+-1.0	0.0	P
125 Hz	0.0	0.2	0.1	0.1	0.0	0.3			0.4	+-1.0	0.1	P

Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13

250 Hz	0.0	0.2	0.0	0.1	0.0	0.2	0.3	+-1.0	0.0	P
500 Hz	0.0	0.2	-0.1	0.1	0.1	0.2	0.3	+-1.0	0.0	P
1 kHz	0.0	0.2	-0.1	0.1	0.0	0.2	0.3	+-0.7	-0.1	P
2 kHz	0.0	0.2	-0.1	0.2	0.0	0.3	0.4	+-1.0	-0.1	P
4 kHz	0.0	0.2	0.0	0.2	-0.1	0.4	0.5	+-1.0	-0.1	P
8 kHz	0.0	0.2	-0.1	0.4	0.0	0.4	0.6	+1.5/-2.5	-0.1	P
16 kHz	0.0	0.2	-0.5	0.7	-0.2	0.6	0.9	+2.5/-16.	0-0.7	P

The actual frequency response of Rion / UC-59 07652 has been used for the calculations.

Test Passed

The overall frequency response of the sound level meter, nominal case reflections and microphone response has shown to conform with the requirements in IEC 61672-3 for a class 1 sound level meter.

LD

CALIBRATION LABORATORY

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Sent

X

Calibration Certificate No.36055

Instrument:

Microphone

UC-59

Model: Manufacturer:

Rion 07652

Serial number:

Customer:

Tel/Fax:

Composed of:

Paul Carpenter Associates, Inc. 973-822-8221 x21/973-833-9221 Date Calibrated: 4/21/2016 Cal Due: 4/21/2017

In tolerance:

Address:

Status:

Received X

Out of tolerance: See comments:

Contains non-accredited tests: __Yes X No

23 Vreeland Road, Suite 204,

Florham Park, NJ 07932

Tested in accordance with the following procedures and standards:

Calibration of Measurement Microphones, Scantek, Inc., Rev. 2/25/2015

Instrumentation used for calibration: N-1504 Norsonic Test System:

Instrument - Manufacturer	Description	S/N	Cal. Date	Traceability evidence	Cal. Due	
mstrument - Wandracturer	Description	3/14	Cal. Date	Cal. Lab / Accreditation	Cal. Due	
483B-Norsonic	SME Cal Unit	31052	Oct 23, 2015	Scantek, Inc./ NVLAP	Oct 23, 2016	
DS-360-SRS	Function Generator	33584	Oct 20, 2015	ACR Env./ A2LA	Oct 20, 2017	
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Oct 6, 2015	ACR Env. / A2LA	Oct 6, 2016	
HM30-Thommen	Meteo Station	1040170/39633	Oct 23, 2015	ACR Env./ A2LA	Oct 23, 2016	
PC Program 1017 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	+	
1253-Norsonic	Calibrator	28326	Nov 10, 2015	Scantek, Inc./ NVLAP	Nov 10, 2016	
1203-Norsonic	Preamplifier	14052	Aug 24, 2015	Scantek, Inc./ NVLAP	Aug 24, 2016	
4180-Brüel&Kjær	Microphone	2246115	Oct 26, 2015	NPL-UK / UKAS	Oct 26, 2017	

Instrumentation and test results are traceable to SI - BIPM through standards maintained by NPL (UK) and NIST (USA)

Calibrated by:	/ Lydon Dawkins /	Authorized signatory:	Valentin Buzdaga
Signature	Lendon Dawkins	Signature	12
Date	4/21/2016	Date	4/22/2016

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2016\Rion59_07652_M1.doc

Page 1 of 2

Results summary: Device was tested and complies with following clauses of mentioned specifications:

CLAUSES / METHODS ¹ FROM PROCEDURES Open circuit sensitivity (insert voltage method, 250 Hz)		MET ^{2,3}	NOT MET	NOT TESTED	MEASUREMENT EXPANDED UNCERTAINTY (coverage factor 2)
		X			See below
	Actuator response	×			63 – 200Hz: 0.3 dB 200 – 8000 Hz: 0.2 dB 8 – 10 kHz: 0.5 dB 10 – 20 kHz: 0.7 dB 20 – 50 kHz: 0.9 dB 50 – 100 kHz: 1.2 dB
Frequency response	FF/Diffuse field responses	х			63 – 200Hz: 0.3 dB 200 – 4000 Hz: 0.2 dB 4 – 10 kHz: 0.6 dB 10 – 20 kHz: 0.9 dB 20 – 50 kHz: 2.2 dB 50 – 100 kHz: 4.4 dB
	Scantek, Inc. acoustical method			x	31.5 – 125 Hz: 0.16 dB 250, 1000 Hz: 0.12 dB 2 – 8 kHz: 0.8 dB 12.5 – 16 kHz: 2.4 dB

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

Note: The free field/diffuse field characteristics were calculated based on the measured actuator response and adjustment coefficients as provided by the manufacturer. The uncertainties reported for these characteristics may include assumed uncertainty components for the adjustment coefficients.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
22.7 ± 1.1	100.12 ± 0.030	47.2 ± 2.2

Main measured parameters:

Tone frequency (Hz)	Measured ⁴ /Acceptable Open circuit sensitivity (dB re 1V/Pa)	Sensitivity (mV/Pa)
250	-26.64 ± 0.12/ -27.0 ±2.0	46.57

⁴ The reported expanded uncertainty is calculated with a coverage factor k=2.00

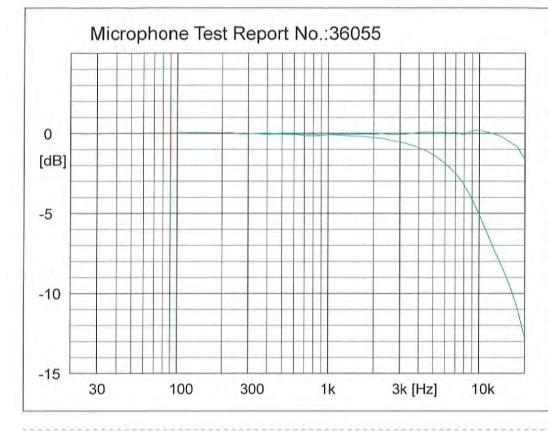
Tests made with following attachments to instrument and auxiliary devices:

Protection grid mounted for sensitivity measurements
Actuator type: G.R.A.S. RA0014

Measured Data: Found on Microphone Test Report # 36055 of one page.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com


Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2016\Rion59_07652_M1.doc

² Parameters are certified at actual environmental conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Rion Type: UC-59

Serial no: 07652

Sensitivity: 46.57 mV/Pa -26.64 ±0.12 dB re. 1 V/Pa

Date: 4/21/2016

Signature:

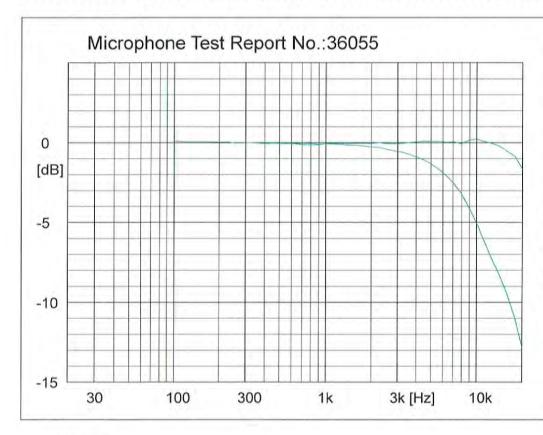
Measurement conditions:

Polarisation voltage:

0.0 V

Pressure: Temperature:

100.12 ±0.03 kPa 22.7 ±1.1 °C


Relative humidity:

47.2 ±2.2 %RH Results are normalized to the measurement conditions.

Free field response Actuator response

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Rion Type: UC-59

Serial no: 07652

Sensitivity: 46.57 mV/Pa -26.64 ±0.12 dB re. 1 V/Pa

Date: 4/21/2016

Signature:

Measurement conditions:

Polarisation voltage: Pressure:

0.0 V 100.12 ±0.03 kPa

Temperature: Relative humidity: 22.7 ±1.1 °C 47.2 ±2.2 %RH

Results are normalized to

the measurement conditions.

Free field response Actuator response

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Comment:

(Z:\Calibration Lab\Mic 2016\Rion59_07652_M1.nmf)

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.37005

Sound Level Meter Instrument:

Model: NL52

Manufacturer: Rion Serial number:

01243611

Tested with: Microphone UC-59 s/n 07653

Preamplifier NH25 s/n 43640

Type (class):

Customer:

Paul Carpenter Associates, Inc.

Tel/Fax:

973-822-8221 x21 / -833-9221

Date Calibrated:9/16/2016 Cal Due: 9/16/2017

Status: Received Sent In tolerance: X X Out of tolerance:

See comments:

Contains non-accredited tests: __Yes X No

Calibration service: __ Basic X Standard 7 Columbia Turnpike, Suite 101 Address:

Florham Park, NJ 07932

Tested in accordance with the following procedures and standards:

Calibration of Sound Level Meters, Scantek Inc., Rev. 6/26/2015 SLM & Dosimeters - Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

	Description	C/N	C-I D-I-	Traceability evidence	C-I Du-	
Instrument - Manufacturer	Description S/N		Cal. Date	Cal. Lab / Accreditation	Cal. Due	
483B-Norsonic	SME Cal Unit	25747	Jul 6, 2016	Scantek, Inc./ NVLAP	Jul 6, 2017	
DS-360-SRS	Function Generator	61646	Aug 12, 2015	ACR Env./ A2LA	Aug 12, 2017	
34401A-Agilent Technologies	Digital Voltmeter	MY41022043	Aug 16, 2016	ACR Env. / A2LA	Aug 16, 2017	
DPI 141-Druck	Pressure Indicator	790/00-04	Nov 18, 2014	ACR Env./ A2LA	Nov 18, 2016	
HMP233-Vaisala Oyj	Humidity & Temp. Transmitter	V3820001	Oct 1, 2015	ACR Env./ A2LA	Apr 1, 2017	
PC Program 1019 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	(+)	
1251-Norsonic	Calibrator	30878	Nov 10, 2015	Scantek, Inc./ NVLAP	Nov 10, 2016	

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
22.6	101.04	51.6

Calibrated by:	Jeremy Gotwalt	Authorized signatory:	Valentin Buzduga
Signature	and this	Signature	. 11/
Date	9/16/16	Date	9/16/2016

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2016\RIONL52_01243611_M1.doc

Page 1 of 2

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB]
INDICATION AT THE CALIBRATION CHECK FREQUENCY - IEC61672-3 ED.2 CLAUSE 10	Passed	0.15
SELF-GENERATED NOISE - IEC 61672-3 ED.2 CLAUSE 11	Passed	0.30
FREQUENCY WEIGHTINGS: A NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: C NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY WEIGHTINGS: Z NETWORK - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	0.20
FREQUENCY AND TIME WEIGHTINGS AT 1 KHZ IEC 61672-3 ED.2.0 CLAUSE 14	Passed	0.20
LEVEL LINEARITY ON THE REFERENCE LEVEL RANGE - IEC 61672-3 ED.2 CLAUSE 16	Passed	0.25
TONEBURST RESPONSE - IEC 61672-3 ED.2.0 CLAUSE 18	Passed	0.30
PEAK C SOUND LEVEL - IEC 61672-3 ED.2.0 CLAUSE 19	Passed	0.35
OVERLOAD INDICATION - IEC 61672-3 ED.2.0 CLAUSE 20	Passed	0.25
HIGH LEVEL STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 21	Passed	0.1
LONG TERM STABILITY TEST - IEC 61672-3 ED.2.0 CLAUSE 15	Passed	0.1
FILTER TEST 1/10CTAVE: RELATIVE ATTENUATION - IEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
FILTER TEST 1/3OCTAVE: RELATIVE ATTENUATION - IEC 61260, CLAUSE 4.4 & #5.3	Passed	0.25
COMBINED ELECTRICAL AND ACOUSTICAL TEST - IEC 61672-3 ED.2.0 CLAUSE 13	Passed	See test report

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

Comments: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2, to demonstrate that the model of sound level meter fully conforms to the requirements in the IEC 61672-2, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger.

Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

rests made w	with the following attachments to the instrument.
Microphone:	Rion UC-59 s/n 07653 for acoustical test
Preamplifier:	Rion NH25 s/n 43640 for all tests
Other: line ad	daptor ADP005 (18pF) for electrical tests
Accompanying	ng acoustical calibrator: none
Windscreen:	Rion WS-10

Measured Data: in Test Report # 37005 of 10 pages.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Parameters are certified at actual environmental conditions.

The tests marked with (*) are not covered by the current NVLAP accreditation.

Summary of Test Report No.:37005

Rion Type: NL52 Serial no: 01243611

Customer:

Paul Carpenter Associates, Inc.

Address:

7 Columbia Turnpike, Suite 101, Florham Park, NJ 07932

Contact Person:

Bryan Fuerte

Phone No.:

973-822-8221 x21

Fax No.:

973-833-9221

Instrument software version: Microphone:

NL-52 v1.5, NX-42EX v1.5, NX-42RT v1.5 Rion

Type: UC-59

Serial no: 07653

Preamplifier

Type: NH25

Serial no: 43640

Sens:-27.56dB

Wind screen

Rion

Rion Type: WS-10

Measurement Results:

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10	Passed
Self-generated noise - IEC 61672-3 Ed.2 Clause 11	Passed
Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13	Passed
Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14	Passed
Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16	Passed
Toneburst response - IEC 61672-3 Ed.2.0 Clause 18	Passed
Peak C sound level - IEC 61672-3 Ed.2.0 Clause 19	Passed
Overload indication - IEC 61672-3 Ed.2.0 Clause 20	Passed
High level stability test - IEC 61672-3 Ed.2.0 Clause 21	Passed
Long term stability test - IEC 61672-3 Ed.2.0 Clause 15	Passed
Filter Test 1/1octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3	Passed
Filter Test 1/3octave; Relative attenuation - IEC 61260, Clause 4.4 & #5.3	Passed
Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13	Passed

Environmental conditions:

Pressure:

Temperature:

Relative humidity:

101.04

22.6

51.6

Date of calibration: 9/16/2016 Date of issue: 9/16/2016 Supervisor: Valentin Buzduga Measurements performed by:

Jeremy Gotwalt(

Software version: 6.1 T

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Test Report No.:37005

Manufacturer: Rion Instrument type: NL52

Serial no: 01243611

Customer: Paul Carpenter Associates, Inc.

Department:

Order No:

Contact Person: Bryan Fuerte

Address: 7 Columbia Turnpike, Suite 101, Florham Park, NJ 07932

Environmental conditions:

Pressure: 101.04
Temperature: 22.6
Relative humidity: 51.6

Supervisor Valentin Buzduga Engineer Jeremy Gotwalt

Date: 9/16/2016

Measurement Results:

Indication at the calibration check frequency - IEC61672-3 Ed.2 Clause 10

Reference Calibrator: WSC4 - NOR1251-30878
Reference calibrator level: 114.06
Before calibration:
 Environmental corrections: 0.00
 Other corrections: -0.02
 Notional level: 114.04
Reference calibrator level before calibration: 114.0
After calibration:
 Environmental corrections: 0.00
 Other corrections: -0.02
 Notional level: 114.04
Reference calibrator level after calibration: 114..0
Associated Calibrator: Associated calibrator level: Not calibrated
Test Passed

Self-generated noise - IEC 61672-3 Ed.2 Clause 11

Network	Level (dB)	Max (dB)	Uncert. (dB)	Result	Comment
A	11.5	17.0	0.3	P	Equivalent capacity
C	15.3	25.0	0.3	P	Equivalent capacity
Z	20.8	30.0	0.3	P	Equivalent capacity
Test Passed					

Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	T	01.	Uncert.	Dev.	Result
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	93.0	92.9	1.0	-1.0	0.2	-0.1	P
125.9	93.0	93.0	1.0	-1.0	0.2	0.0	P
251.2	93.0	92.9	1.0	-1.0	0.2	-0.1	P
501.2	93.0	92.9	1.0	-1.0	0.2	-0.1	P
1000.0	93.0	93.0	0.7	-0.7	0.2	0.0	P
1995.3	93.0	93.0	1.0	-1.0	0.2	0.0	P
3981.1	93.0	93.0	1.0	-1.0	0.2	0.0	P
7943.3	93.0	93.1	1.5	-2.5	0.2	0.1	P
15848.9	93.0	91.8	2.5	-16.0	0.2	-1.2	P
Test Passed							

Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref.	Meas.	7	01.	Uncert.	Dev.	Result
	Level	Value					
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	93.0	92.9	1.0	-1.0	0.2	-0.1	P
125.9	93.0	93.0	1.0	-1.0	0.2	0.0	P
251.2	93.0	92.9	1.0	-1.0	0.2	-0.1	P
501.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
1000.0	93.0	93.0	0.7	-0.7	0.2	0.0	P
1995.3	93.0	93.0	1.0	-1.0	0.2	0.0	P
3981.1	93.0	93.0	1.0	-1.0	0.2	0.0	P
7943.3	93.0	93.1	1.5	-2.5	0.2	0.1	P
15848.9	93.0	91.8	2.5	-16.0	0.2	-1.2	P
Test Passed							

Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13

Freq	Ref. Level	Meas. Value	T	ol.	Uncert.	Dev.	Result
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	93.0	92.9	1.0	-1.0	0.2	-0.1	P
125.9	93.0	93.0	1.0	-1.0	0.2	0.0	P
251.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
501.2	93.0	93.0	1.0	-1.0	0.2	0.0	P
1000.0	93.0	93.0	0.7	-0.7	0.2	0.0	P
1995.3	93.0	93.0	1.0	-1.0	0.2	0.0	B
3981.1	93.0	93.0	1.0	-1.0	0.2	0.0	P
7943.3	93.0	93.0	1.5	-2.5	0.2	0.0	P
15848.9	93.0	93.0	2.5	-16.0	0.2	0.0	P
Test Passed							

Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14

Weightings		Ref.	Measured	T	01.	Uncert.	Dev.	Result
Time	Netw	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
Fast	C	94.0	94.0	0.1	-0.1	0.2	0.0	P
Fast	Z	94.0	94.0	0.1	-0.1	0.2	0.0	P
Slow	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
Leq	A	94.0	94.0	0.1	-0.1	0.2	0.0	P
SEL	A	104.0	104.0	0.1	-0.1	0.2	0.0	P
Test	Passed							

Level linearity on the reference level range - IEC 61672-3 Ed.2 Clause 16

	140	Sec.	. 1	W. Santania		6.0004.0
	Measured		ol.	Uncert.		Result
(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
The follow	setting: 1	ronts a	ro CDT	measurements	,	
Measured a		nents a	TE SEL	measurements	2	
84.0		0.8	-0.8	0.25	0.0	P
89.0	89.0	0.8	-0.8	0.25	0.0	P
94.6	94.6		-0.8		0.0	P
95.6	95.6	0.8	-0.8	0.25	0.0	P
96.6	96.6	0.8	-0.8		0.0	P
97.6		0.8	-0.8		0.0	P
98.6		0.8	-0.8		0.0	P
84.0	84.5		-0.8	0.25	0.5	P
79.0	79.0		-0.8		0.0	P
74.0	74.1	0.8	-0.8		0.1	P
69.0	69.1	0.B	-0.8		0.1	P
64.0	64.1	0.8	-0.8		0.1	P
59.0	59.0	0.8	-0.8		0.0	P
54.0	54.0		-0.8		0.0	P
49.0	49.0	0.8	-0.8		0.0	P
44.0	44.0		-0.8		0.0	P
39.0	39.0		-0.8		0.0	P
34.0	34.0	0.8	-0.8		0.0	P
29.0	29.0	0.8	-0.8		0.0	P
28.0	27.9	0.8	-0.8		-0.1	P
27.0	26.9	0.8			-0.1	P
26.0	26.0		-0.8		0.0	P
25.0	24.9	0.8	-0.8	0.25	-0.1	P
Measured at						
94.0	94.0	0.8	-0.8	0.25	0.0	P
99.0	99.0	0.8	-0.8	0.25	0.0	P
104.0	104.0	0.8	-0.8	0.25	0.0	P
109.0	109.0	0.8	-0.8	0.25	0.0	P
114.0	114.0	0.8	-0.8		0.0	P
119.0	119.0	0.8	-0.8	0.25	0.0	P
124.0	124.0	0.8	-0.8		0.0	P
129.0	129.0	0.8	-0.8		0.0	P
134.0	134.0	0.8			0.0	P
135.0	135.0	0.8	-0.8		0.0	P
136.0	136.0	0.8	-0.8	0.25	0.0	P
137.0	137.0	0.8	-0.8	0.25	0.0	P
138.0	138.0	0.8	-0.8		0.0	P
94.0	94.0	0.8	-0.8	0.25	0.0	P
89.0	89.0	0.8	-0.8	0.25	0.0	P
84.0	84.0	0.8	-0.8	0.25	0.0	P
79.0	79.0	0.8			0.0	P
74.0	74.0	0.8	-0.8	0.25	0.0	P
69.0	69.0	0.8	-0.8	0.25	0.0	P
64.0	64.0	8.0	-0.8	0.25	0.0	P
59.0	59.0	0.8	-0.8	0.25	0.0	P
54.0	54.0	0,8	-0.8	0.25	0.0	P
49.0	49.0	0.8	-0.8	0.25	0.0	P
44.0	44.0	0.8	-0.8	0.25	0.0	P P
39.0 34.0	39.0 34.0	0.8	-0.8	0.25	0.0	P
29.0	29.0	0.8	-0.8	0.25	0.0	P
28.0	28.0	0.8	-0.8	0.25	0.0	P
20.0	20.0	0.0	0.0	0.23	0.0	E

Level	linea Ref.	rity on the Measured		ence le	evel range - Uncert.	- IEC 616 Dev.	72-3 Ed.2 Result	Clause	16
((dB)	(dB)	(dB)	(dB)	(dB)	(dB)			
2	27.0	27.0	0.8	-0.8	0.25	0.0	P		
2	26.0	25.9	0.8	-0.8	0.25	-0.1	P		
. 2	25.0	25.0	0.8	-0.8	0.25	0.0	P		
Measur	ed at	8 kHz							
9	94.0	94.0	0.8	-0.8	0.25	0.0	P		
9	9.0	99.0	0.8	-0.8	0.25	0.0	P		
10	14.0	104.0	0.8	-0.8	0.25	0.0	P		
10	9.0	109.0	0.8	-0.8	0.25	0.0	P		
11	4.0	114.0	0.8	-0.8	0.25	0.0	P		
11	9.0	119.0	0.8	-0.8	0.25	0.0	P		
12	4.0	124.0	0.8	-0.8	0.25	0.0	P		
12	9.0	129.0	0.8	-0.8	0.25	0.0	P		
13	2.9	132.8	0.8	-0.8	0.25	-0.1	P		
13	3.9	133.9	0.8	-0.8	0.25	0.0	P		
13	4.9	134.9	0.8	-0.8	0.25	0.0	P		
13	5.9	135.9	0.8	-0.8	0.25	0.0	P		
13	6.9	136.9	0.8	-0.8	0.25	0.0	P		
9	4.0	94.0	0.8	-0.8	0.25	0.0	P		
8	9.0	89.0	0.8	-0.8	0.25	0.0	P		
8	4.0	84.0	0.8	-0.8	0.25	0.0	P		
7	9.0	78.9	0.8	-0.8	0.25	-0.1	P		
7	4.0	74.0	0.8	-0.8	0.25	0.0	P		
6	9.0	69.0	0.8	-0.8	0.25	0.0	P		
6	4.0	63.9	0.8	-0.8	0.25	-0.1	P		
5	9.0	59.0	0.8	-0.8	0.25	0.0	P		
5	4.0	53.9	0.8	-0.8	0.25	-0.1	P		
4	9.0	48.9	0.8	-0.8	0.25	-0.1	P		
4	4.0	43.9	0.8	-0.8	0.25	-0.1	P		
3	9.0	38.9	0.8	-0.8	0.25	-0.1	P		
3	4.0	34.0	0.8	-0.8	0.25	0.0	P		
	9.0	28.9	0.8	-0.8	0.25	-0.1	P		
	8.0	28.0	0.8	-0.8	0.25	0.0	P		
2	7.0	27.0	0.8	-0.8	0.25	0.0	P		
	6.0	25.9	0.8	-0.8	0.25	-0.1	P		
	5.0	25.0	0.8	-0.8	0.25	0.0	P		
Test P	assed								

Toneburst response - IEC 61672-3 Ed.2.0 Clause 18

Burst type	Ref.	Measured	T^{\prime}	01.	Uncert.	Dev.	Result
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast 200 mSec	135.0	135.0	0.5	-0.5	0.3	0.0	P
Fast 2.0 mSec	118.0	117.9	1.0	-1.5	0.3	-0.1	P
Fast 0.25 mSec	109.0	108.8	1.0	-3.0	0.3	-0.2	P
Slow 200 mSec	128.6	128.5	0.5	-0.5	0.3	-0.1	P
Slow 2.0 mSec	109.0	108.9	1.0	-3.0	0.3	-0.1	P
SEL 200 mSec	129.0	129.0	0.5	-0.5	0.3	0.0	P
SEL 2.0 mSec	109.0	109.0	1.0	-1.5	0.3	0.0	P
SEL 0.25 mSec	100.0	99.8	1.0	-3.0	0.3	-0.2	P
Test Passed							

Peak C sound level - IEC 61672-3 Ed.2.0 Clause 19

Pulse	Pulse	Ref.	Ref.	Measured	Tol.	Uncert.	Dev.	Result
Type	Freq.	RMS	Peak	Value				
71	(HZ)	(dB)	(dB)	(dB)	(+/-dB)	(dB)	(dB)	
1 cycle	8 k	130.0	133.4	132.8	2.0	0.35	-0.6	P
Pos 1/2 cycle	500	133.0	135.4	135.1	1.0	0.35	-0.3	P
Neg 1/2 cycle	500	133.0	135.4	135.1	1.0	0.35	-0.3	B
Test Passed								

Overload indication - IEC 61672-3 Ed.2.0 Clause 20

1. Uncert. (dB)	Result
5 0.25	P

High level stability test - IEC 61672-3 Ed.2.0 Clause 21

Test signal:	Sine wa	ve at 1	kHz		
Initial	Final	Diff.	Tol.	Uncert.	Result
level	level		value		
(dB)	(dB)	(dB)	(dB)	(dB)	
136.9	137.0	0.1	0.1	0.1	P
Test Passed					

Long term stability test - IEC 61672-3 Ed.2.0 Clause 15

Test signal: Time inteval			Difference	Tolerence	Result
(mm:SS)	(dB)	(dB)	(dB)	(dB)	
25:11	94.0	94.1	0.1	0.1	P
Test Passed					

Filter Test 1/1octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3

Test 1/1 oct	ave filter 2	K= 3 fexact:	=7943.282Hz	class 1
Nominal	Measured	LoLim	HiLim	Result
f[Hz]	L[dB]	[dB]	[dB]	[P/F]
501.187	31.2	0.0	58.0	P
1000.00	31.4	0.0	67.0	P
1995.26	41.4	0.0	86.0	P
3981.07	88.2	0.0	110.5	P
5623.41	124.8	123.0	126.0	P
6130.56	127.8	126.7	128.3	P

Filter Test	1/loctave:	Relative	attenuation	- IEC	61260,	Clause	4.4 &	#5.3
6683.44	128.0	127.4	128.3	P				
7286.18	128.0	127.6	128.3	P				
7943.28	128.0	127.7	128.3	P				
8659.64	128.0	127.6	128.3	P				
9440.61	128.0	127.4	128.3	P				
10292.0	127.8	126.7	128.3	P				
11220.2	124.7	123.0	126.0	P				
15848.9	87.3	0.0	110.5	P				
31622.8	31.7	0.0	86.0	P				
63095.7	32.7	0.0	67.0	P				
125893	26.4	0.0	58.0	P				
Test 1/1 oct	tave filter	X= 4 fexac	t=15848.932F	iz clas	s 1			
Nominal	Measured	LoLim	HiLim	Resul	t			
f[Hz]	L[dB]	[dB]	[dB]	[P/F]				
1000.00	37.2	0.0	58.0	P				
1995.26	37.0	0.0	67.0	P				
3981.07	39.7	0.0	86.0	P				
7943.28	83.6	0.0	110.5	P				
11220.2	123.8	123.0	126.0	P				
12232.1	127.8	126.7	128.3					
13335.2	127.9	127.4	128.3	P				
14537.8	127,9	127.6	128.3	P				
15848.9	127.9	127.7	128.3	P				
17278.3	127.9	127.6	128.3	P				
18836.5	127.9	127.4	128.3	P				
20535.3	127.5	126.7	128.3	P				
22387.2	124.2	123.0	126.0	P				
31622.8	44.9	0.0	110.5	P				
63095.7	37.8	0.0	86.0	P				
125893	36.6	0.0	67.0	P				
200000	30.8	0.0	58.0	P				
THE COUNTY OF TH								

Filter Test 1/3octave: Relative attenuation - IEC 61260, Clause 4.4 & #5.3

	octave filter					1
Nomin	al Measured	Lo	Lim	HiLim .	Result	
f[Hz] L[dB]		[dB]	[dB]	[P/F]	
2939.3	7 43.9	(0.0	58.0	P	
	6 60.8	(0.0	67.0	P	
8422.5	4 79.5	(0.0	86.0	P	
12244.5	105.0				P	
14125.4	124.2	123	3.0	126.0	P P P	
14574.3	127.1	126	5.7	128.3	P	
15012.0	127.9	127	7.4	128.3	P	
15437.2	127.9	127	7.6	128.3	P P P	
15848.9	127.9	127	7.7	128.3	P	
16271.7	127.9	127	1.6	128.3	P	
16732.6	127.9	127	1.4	128.3	P	
17235.0	127.0	128	5.7	128.3	P	
17782.8	123.9	123	3.0	126.0	P	
20514.4	104.7	C	0.0	110.5	P	
29823.4	31.4	C	0.0	86.0	P	
48397.1	31.8	C	0.0	67.0	P	
85456.6	42.9	C	0.0	58.0	P	
Test 1/3	octave filter	X = 13	fexact	=19952.623H;	class	1

Test Passed

Nominal	Measured	LoLim	HiLim	Result
f[Hz]	L[dB]	[dB]	[dB]	[P/F]
3700.45	41.4	0.0	58.0	P
6534.02	57.6	0.0	67.0	P
10603.4	77.3	0.0	86.0	P P
15414.9	105.1	0.0	110.5	
17782.8	125.1	123.0	126.0	P
18348.0	127.3	126.7	128.3	P
18898.9	127.9	127.4	128.3	P
19434.2	127.9	127.6	128.3	P
19952.6	127.9	127.7	128.3	P
20484.8	127.9	127.6	128.3	P
21065.1	127.9	127.4	128.3	P
21697.6	127.1	126.7	128.3	P
22387.2	123.6	123.0	126.0	P
25826.2	86.8	0.0	110.5	P
37545.4	36.2	0.0	86.0	P
60928.4	36.0	0.0	67.0	P
107584	35.4	0.0	58.0	P
Test Passed				

Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13

A-Weigh	ted re	sults:		field								
Frequen	cy S	M.I.	Micro	phone	Case	Refl.			Uncer	t Tol	Result	
	Val.	U	Val	U	Val	Ω	Val	U				
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	-0.1	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	-0.1	P
125 Hz	0.0	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.0	P
250 Hz	-0.1	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	-0.1	P
500 Hz	-0.1	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	-0.1	P
1 kHz	0.0	0.2	0.0	0.1			0.1	0.1	0.2	+-0.7	0.1	P
2 kHz	0.0	0.2	0.0	0.2			0.3	0.2	0.4	+-1.0	0.3	P
4 kHz	0.0	0.2	0.3	0.2			0.3	0.2	0.4	+-1.0	0.6	P
8 kHz	0.1	0.2	0.2	0.4			0.0	0.3	0.5	+1.5/-2.	5 0.3	P
16 kHz	-1.2	0.2	-0.5	0.7			-0.7	0.4	0.8	+2.5/-16	.0-2.4	P
C-Weigh				field								
Frequen		LM	Micro	phone	Case	Refl.	Wind S	Green	Uncer	t Tol	Result	
1.64.4.14.1	Val	U	Val	U	Val	U	Val	U				
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	-0.1	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	-0.1	P
125 Hz	0.0	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.0	P
250 Hz	-0.1	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	-0.1	P
500 Hz	0.0	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.0	P
1 kHz	0.0	0.2	0.0	0.1			0.1	0.1	0.2	+-0.7	0.1	P
2 kHz	0.0	0.2	0.0	0.2			0.3	0.2	0.4	+-1.0	0.3	P
4 kHz	0.0	0.2	0.3	0.2			0.3	0.2	0.4	+-1.0	0.6	P
8 kHz	0.1	0.2	0.2	0.4			0.0	0.3	0.5	+1.5/-2.	5 0.3	P
16 kHz	-1.2	0.2	-0.5	0.7			-0.7	0.4		+2.5/-16		P
Z-Weigh	ted re			field								
Frequen		LM	Micro	phone	Case	Refl.	Wind S	creen	Uncer	t Tol	Result	
30.830.51	Val	U	Val	U	Val	U	Val	U				
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63 Hz	-0.1	0.2	0.0	0.1		Val.	0.0	0.1	0.2	+-1.0	-0.1	P
125 Hz	0.0	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.0	P
250 Hz	0.0	0.2	0.0	0.1			0.0	0.1	0.2	+-1.0	0.0	P
man are	(5) (5) (5)	9 3/22		10.7			10, 61, 15		21,5110		1000	

Combined electrical and acoustical test - IEC 61672-3 Ed.2.0 Clause 13

500 Hz	0.0	0.2	0.0	0.1	0.0	0.1	0.2	+-1.0	0.0	P
1 kHz	0.0	0.2	0.0	0.1	0.1	0.1	0.2	+-0.7	0.1	P
2 kHz	0.0	0.2	0.0	0.2	0.3	0.2	0.4	+-1.0	0.3	P
4 kHz	0.0	0.2	0.3	0.2	0.3	0.2	0.4	+-1.0	0.6	P
8 kHz	0.0	0.2	0.2	0.4	0.0	0.3	0.5	+1.5/-2.5	0.2	P
16 kHz	0.0	0.2	-0.5	0.7	-0.7	0.4	0.8	+2.5/-16.0	-1.2	P

The actual frequency response of Rion / UC-59 07653 has been used for the calculations.

Test Passed

The overall frequency response of the sound level meter, typical wind screen response and microphone response has shown to conform with the requirements in IEC 61672-3 for a class 1 sound level meter.

CALIBRATION LABORATORY

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.37006

Instrument: Microphone

Model: UC-59

Manufacturer: Rion Serial number: 07653

Composed of:

Customer:

Paul Carpenter Associates, Inc.

Tel/Fax:

973-822-8221 x21/973-833-9221

Date Calibrated: 9/16/2016 Cal Due: 9/16/17

Status: Received Sent In tolerance:

Out of tolerance:

See comments:

Contains non-accredited tests: __Yes X No

Address: 7 Columbia Turnpike, Suite 101

Florham Park, NJ 07932

Tested in accordance with the following procedures and standards:

Calibration of Measurement Microphones, Scantek, Inc., Rev. 2/25/2015

Instrumentation used for calibration: N-1504 Norsonic Test System:

Instrument - Manufacturer	Description	S/N	Cal. Date	Traceability evidence	Cal. Due
Instrument - Manufacturer	Description	3/14	Car. Date	Cal. Lab / Accreditation	Cal. Due
483B-Norsonic	SME Cal Unit	25747	Jul 6, 2016	Scantek, Inc./ NVLAP	Jul 6, 2017
DS-360-SRS	Function Generator	61646	Aug 12, 2015	ACR Env./ A2LA	Aug 12, 2017
34401A-Agilent Technologies	Digital Voltmeter	MY41022043	Aug 16, 2016	ACR Env. / A2LA	Aug 16, 2017
DPI 141-Druck	Pressure Indicator	790/00-04	Nov 18, 2014	ACR Env./ A2LA	Nov 18, 2016
HMP233-Vaisala Oyj	Humidity & Temp. Transmitter	V3820001	Oct 1, 2015	ACR Env./ A2LA	Apr 1, 2017
PC Program 1017 Norsonic	Calibration software	v.6.1T	Validated Nov 2014	Scantek, Inc.	
1253-Norsonic	Calibrator	28326	Nov 10, 2015	Scantek, Inc./ NVLAP	Nov 10, 2016
1203-Norsonic	Preamplifier	14059	Jan 4, 2016	Scantek, Inc./ NVLAP	Jan 4, 2017
4180-Brüel&Kjær	Microphone	2246115	Oct 26, 2015	NPL-UK / UKAS	Oct 26, 2017

Instrumentation and test results are traceable to SI - BIPM through standards maintained by NPL (UK) and NIST (USA)

Calibrated by:	Kenda Newton	Authorized signatory:	Valentin Buzduga
Signature	18 herton	Signature	1/2
Date	9-16-16	Date	9/16/2016

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2016\Rion59_07653_M1.doc

Page 1 of 2

Results summary: Device was tested and complies with following clauses of mentioned specifications:

	CLAUSES / METHODS ¹ FROM PROCEDURES	MET ^{2,3}	NOT MET	NOT TESTED	MEASUREMENT EXPANDED UNCERTAINTY (coverage factor 2)
Open circuit sen	sitivity (insert voltage method, 250 Hz)	X			See below
	Actuator response	x			63 – 200Hz: 0.3 dB 200 – 8000 Hz: 0.2 dB 8 – 10 kHz: 0.5 dB 10 – 20 kHz: 0.7 dB 20 – 50 kHz: 0.9 dB 50 – 100 kHz: 1.2 dB
Frequency response	FF/Diffuse field responses	x			63 – 200Hz: 0.3 dB 200 – 4000 Hz: 0.2 dB 4 – 10 kHz: 0.6 dB 10 – 20 kHz: 0.9 dB 20 – 50 kHz: 2.2 dB 50 – 100 kHz: 4.4 dB
	Scantek, Inc. acoustical method			×	31.5 – 125 Hz: 0.16 dB 250, 1000 Hz: 0.12 dB 2 – 8 kHz: 0.8 dB 12.5 – 16 kHz: 2.4 dB

 $^{^{1}}$ The results of this calibration apply only to the instrument type with serial number identified in this report.

Note: The free field/diffuse field characteristics were calculated based on the measured actuator response and adjustment coefficients as provided by the manufacturer. The uncertainties reported for these characteristics may include assumed uncertainty components for the adjustment coefficients.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
22.0 ± 1.0	101.25 ± 0.005	54.8 ± 2.1

Main measured parameters:

Tone frequency (Hz)	Measured ⁴ /Acceptable Open circuit sensitivity (dB re 1V/Pa)	Sensitivity (mV/Pa)
250	-27.56 ± 0.12/ -27.0 ±2.0	41.87

The reported expanded uncertainty is calculated with a coverage factor k=2.00

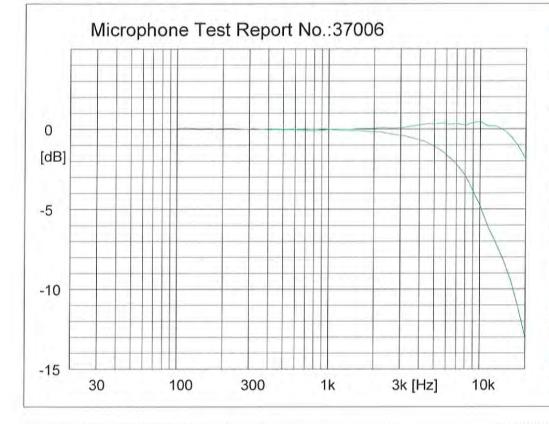
Tests made with following attachments to instrument and auxiliary devices:

Protection grid mounted for sensitivity measurements
Actuator type: G.R.A.S. RA0014

Measured Data: Found on Microphone Test Report # 37006 of one page.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com


Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.

This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Mic 2016\Rion59_07653_M1.doc

² Parameters are certified at actual environmental conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Rion Type: UC-59

Serial no: 07653

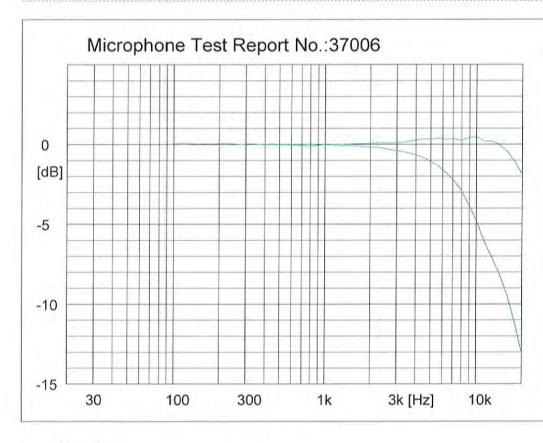
Sensitivity: 41.87 mV/Pa -27.56 ±0.12 dB re. 1 V/Pa

Date: 9/16/2016

Signature:

Measurement conditions: Polarisation voltage:

Pressure: Temperature: Relative humidity:


101.25 ±0.01 kPa 22.0 ±1.0 °C

54.8 ±2.1 %RH Results are normalized to the measurement conditions.

Free Field response Actuator response

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Rion Type: UC-59

Serial no: 07653

Sensitivity: 41.87 mV/Pa -27.56 ±0.12 dB re. 1 V/Pa

Date: 9/16/2016

Signature:

KN

Measurement conditions:

Polarisation voltage: Pressure:

0.0 V

Temperature: Relative humidity: 101.25 ±0.01 kPa 22.0 ±1.0 °C 54.8 ±2.1 %RH

Results are normalized to

the measurement conditions.

Free Field response Actuator response

Scantek, Inc.

6430 Dobbin Rd., Suite C, Columbia, MD 21045 Ph: 410-290-7726 eMail: callab@scantekinc.com

Comment:

(Z:\Calibration Lab\Mic 2016\Rion59_07653_M1.nmf)

APPENDIX B NOISE MONITORING PHOTOS

460 W. Saddle River Road (Block 4704, Lots 9, 10, 11, 12) Noise Monitoring Photos

Site # 1: (View Facing RT. 17 NB)

Site # 2: (View Facing W Saddle River Road)

460 W. Saddle River Road (Block 4704, Lots 9, 10, 11, 12) Noise Monitoring Photos

Site # 3: (View Facing RT. 17 NB)

Site # 4:

(View Facing W Saddle River Road and House on 617 Terhune Rd)

460 W. Saddle River Road (Block 4704, Lots 9, 10, 11, 12) Noise Monitoring Photos

Site # 5: (View Facing RT. 17 NB)

Site # 6: (View Facing W Saddle River Road)

APPENDIX C CERTIFIED METEOROLOGICAL DATA

Month/Year: 2/2017

Station Location: NEWARK LIBERTY INTERNATIONAL AP (14734)

I on: -74 169

Elev: 7 ft. above sea level WBAN 14734 Date 2/23/2017 **Time** 0:5 StationTyr SkyCondition 11 SCT250 14734 2/23/2017 1:51 11 SCT250 10 48 8.9 77 ٥ 2/23/2017 SCT250 10 14734 2/23/2017 3:51 11 SCT250 46 7.8 83 0 14734 FEW250 43 44 2/23/2017 4:51 6.1 93 180 14734 2/23/2017 5:51 11 FEW250 9 6.7 89 5 190 44 44 43 14734 2/23/2017 6:51 11 FEW250 6.7 93 200 14734 2/23/2017 6:55 11 FEW008 SCT250 2.5 6.7 93 3 190 14734 2/23/2017 7:03 BKN005 6.1 93 220 7:16 7:30 0.25 44 44 44 6.7 6.7 96 96 14734 2/23/2017 11 OVC003 8 240 2/23/2017 7:10 250 14734 2/23/2017 7:34 11 OVC001 0.25 6.7 250 11 OVC001 0.25 45 93 14734 2/23/2017 240 2/23/2017 44 44 45 6.7 96 96 100 14734 2/23/2017 7:51 11 OVC001 0.25 250 2/23/2017 7:50 6.7 7.2 11 VV002 14734 2/23/2017 8:01 0.25 230 11 OVC003 14734 2/23/2017 8:35 0.5 6 210 14734 2/23/2017 8:49 11 OVC003 46 14734 2/23/2017 8:51 11 OVC003 46 46 7.8 210 **T** BKN005 BKN010 5 VR 2/23/2017 1.75 1.75 1.75 14734 2/23/2017 9:51 11 BKN005 BKN010 48 51 8.9 100 160 T BKN005 OVC010 10.6 210 2/23/2017 11.1 12 14734 2/23/2017 11.25 11 BKN005 OVC010 2.5 52 90 8 230 BKN005 OVC010 2/23/2017 54 54 58 60 86 13 240 14734 2/23/2017 11:51 BKN006 OVC010 3 12.2 86 11 240 14.4 15.6 14734 SCT008 BKN012 78 2/23/2017 12:51 10 230 14734 2/23/2017 13:14 11 FEW008 SCT012 SCT 10 72 11 250 14734 2/23/2017 13:51 FEW010 SCT250 10 62 16.7 70 220 14734 2/23/2017 14:51 11 FEW040 FEW100 SC 10 10 65 66 18.3 63 61 9 180 14734 2/23/2017 FEW040 FEW100 SC 18.9 180 16.7 13.9 120 20 14734 2/23/2017 16:51 11 FEW040 FEW100 SC 10 10 65 72 6 57 58 57 58 59 58 55 FEW080 SCT250 14734 2/23/2017 18:51 11 FEW060 SCT250 10 14 4 72 5 50 10 10 75 140 14734 2/23/2017 19:51 FEW070 BKN250 13.9 14734 2/23/2017 20:51 11 FEW060 FEW080 BKI 14.4 72 3 200 14734 2/23/2017 FEW060 SCT080 BKN 10 10 15 75 150 14734 2/23/2017 22:51 11 FEW060 FEW080 BK 14.4 75 5 180 14734 2/23/2017 23:5 BKN090 BKN250 10 12.8 80 210 13.9 13.3 14734 2/24/2017 0.51 11 BKN090 OVC250 10 10 78 210 57 56 55 54 54 54 53 57 61 2/24/2017 FEW090 SCT250 200 14734 2/24/2017 2:51 11 FEW090 SCT250 10 10 12.8 12.2 83 83 5 0 170 2/24/2017 FEW090 FEW250 14734 2/24/2017 4:51 11 FFW180 BKN250 10 12 2 86 ٥ ٥ 2/24/2017 5:51 FEW150 BKN200 10 10 10 10 12.2 86 160 14734 2/24/2017 6:51 11 FEW140 SCT200 11.7 90 0 14734 2/24/2017 FEW130 FEW200 BK 13.9 83 7:51 190 14734 2/24/2017 8:51 11 FEW150 BKN250 16.1 75 9 210 14734 2/24/2017 9:51 FEW150 BKN250 10 66 18.9 68 220 14734 2/24/2017 10:51 11 FEW090 SCT250 10 10 68 72 20 63 9 180 14734 2/24/2017 FEW035 SCT250 22.2 53 13 190 22.8 22.2 14734 2/24/2017 12:51 11 SCT045 BKN250 10 10 50 13 8 170 73 72 70 69 SCT046 BKN250 14734 2/24/2017 14:51 11 SCT048 10 21 1 53 9 130 BKN055 BKN250 10 10 14734 2/24/2017 15:51 20.6 55 150 SCT055 SCT100 BKN 68 67 65 14734 2/24/2017 16:51 20 59 10 160 FEW050 SCT100 BKN 10 10 14734 2/24/2017 19.4 61 8 7 160 14734 2/24/2017 18:51 11 FEW040 FEW100 SC 18.3 65 160 14734 2/24/2017 19:25 FEW040 SCT250 10 64 17.8 68 170 14734 2/24/2017 19:51 11 FEW040 SCT250 10 10 64 61 17.8 73 180 FEW005 FEW250 16.1 160 2/24/2017 20:51 16.1 15.6 14734 2/24/2017 21:51 11 FEW005 SCT250 10 10 61 60 84 170 FEW005 SCT027 BKN 90 180 14734 2/24/2017 23:51 11 FEW005 FEW029 SC 10 59 15 90 5 180 10 15 2/25/2017 0:51 FEW005 BKN055 OV 59 58 58 53 51 90 150 14734 2/25/2017 1:51 11 FEW004 SCT050 BKN 10 14.4 90 14.4 11.7 14734 FEW004 SCT055 BKN 90 2/25/2017 2:51 170 90 14734 2/25/2017 3:51 11 FEW004 FEW055 BKI 9 90 14734 2/25/2017 4:51 SCT003 10.6 93 90 14734 2/25/2017 5:31 11 VV012 0.5 50 10 93 80 50 50 50 14734 2/25/2017 BKN001 BKN006 OVC 0.5 10 90 2/25/2017 5:40 14734 2/25/2017 5:51 11 BKN001 BKN006 OVC 0.5 10 10 90 6:01 0.25 11 VV001 100 14734 2/25/2017 6:46 0 12 48 9 60 VV002 96 96 96 100 14734 2/25/2017 6:51 0.12 49 50 50 49 9.4 70 14734 2/25/2017 7:10 11 OVC002 0.12 10 80 7:23 VV002 10 14734 2/25/2017 0.12 11 OVC002 14734 2/25/2017 7:41 0.12 9.4 110 14734 2/25/2017 7:51 OVC002 0.12 49 9.4 100 100 96 100 110 110 14734 2/25/2017 7:57 11 OVC003 0 12 50 50 50 50 10 10 8:02 BKN002 OVC070 0.5 2/25/2017 1.5 4 14734 2/25/2017 8:15 BKN002 OVC070 10 100 6 3 90 SCT002 BKN070 OVC 10 100 14734 2/25/2017 8:51 11 FEW005 SCT070 BKN 53 56 58 64 65 11 7 90 2/25/2017 8:50 FEW012 SCT070 BKN 2/25/2017 9:51 10 13.3 80 14.4 17.8 14734 2/25/2017 10:51 11 FEW014 SCT070 BKN 10 78 80 80 120 14734 2/25/2017 11:51 FEW020 SCT070 BKN 10 10 70 14734 2/25/2017 12:51 11 SCT023 SCT070 BKN 18.3 68 11 14734 2/25/2017 13:51 SCT023 SCT070 BKN 10 65 18.3 70 16 140 14734 2/25/2017 14:51 11 SCT023 SCT070 BKN 10 66 64 18.9 68 15 150 2/25/2017 11 FEW023 FEW070 SC

Month/Year: 2/2017 Station Location: NEWARK LIBERTY INTERNATIONAL AP (14734) Lat: 40.682 Lon: -74.169 Elev: 7 ft. above sea level

1/172/	2/25/2017			dit Visibility DryE						yPrecip F	interOut?	riiter Date	riiter iiin
14734 14734	2/25/2017 2/25/2017	16:51 17:51	11 FEW020 FEW070 BKI 11 FEW065 BKN100 OV(10	62 61	16.7 16.1	78 84	15 10	150 180 <i>T</i>		Y	2/25/2017	17:00
14734	2/25/2017	18:03	11 SCT060CB SCT080	10	62	16.7	81	9	180			2/25/2017	18:00
14734	2/25/2017	18:24	11 FEW021 BKN055CB (0.5	61	16.1	87	21	250		Υ	2/25/2017	18:10
14734	2/25/2017	18:32	11 FEW012 BKN021 OV(0.5	58	14.4	87	20	260		Ý	2/20/2011	10.10
14734	2/25/2017	18:33	11 FEW012 BKN021 OV(3	57	13.9	90	16	270		•	2/25/2017	18:30
14734	2/25/2017	18:51	11 FEW012 SCT021 OVC	5	55	13	90	15	260	0.43	Υ	2/25/2017	18:40
14734	2/25/2017	19:04	11 SCT014 SCT022 OVC	10	55	12.8	90	15	290			2/25/2017	19:00
14734	2/25/2017	19:27	11 SCT014 BKN021 OVC	7	54	12.2	86	26	270		Υ	2/25/2017	19:10
14734	2/25/2017	19:51	11 SCT019 BKN037 OVC	7	52	11.1	86	18	310	0.1	Υ		
14734	2/25/2017	20:51	11 FEW019 BKN075 OV(10	50	10	77	11	310	0.01	Υ		
14734	2/25/2017	21:51	11 SCT100 BKN140 BKN	10	50	10	71	13	290 T		Υ		
14734	2/25/2017	22:51	11 FEW020 BKN035 BKN	10	49	9.4	69	21	310 T		Υ		
14734	2/25/2017	23:51	11 FEW027 SCT040 BKN	10	46	7.8	66	18	330 T		Υ		
14734	2/26/2017	0:51	11 FEW034 SCT040 BKN	10	44	6.7	63	21	290		Υ		
14734	2/26/2017	1:51	11 FEW034 OVC060	10	43	6.1	63	17	290			2/26/2017	1:50
14734	2/26/2017	2:51	11 BKN034 OVC060	10	42	5.6	65	15	290 T		Y	2/26/2017	2:00
14734	2/26/2017	3:51	11 FEW035 OVC050	10	41	5	53	18	310 T		Υ	0/00/0047	4.50
14734 14734	2/26/2017 2/26/2017	4:51 5:51	11 BKN045 11 SCT045	10 10	39 37	3.9 2.8	53 46	15 17	300 300			2/26/2017	4:50
14734	2/26/2017	6:51	11 BKN048	10	37	2.8	46	17	300				
14734	2/26/2017	7:51	11 BKN047	10	38	3.3	46	13	300				
14734	2/26/2017	8:51	11 BKN047	10	39	3.9	43	22	300		Υ	2/26/2017	8:00
14734	2/26/2017	9:51	11 BKN049 11 BKN049	10	39	3.9	39	18	290		Ϋ́	2/20/2017	0.00
14734	2/26/2017	10:51	11 BKN055	10	41	5.9	36	21	290		Ϋ́		
14734	2/26/2017	11:51	11 SCT055	10	42	5.6	32	23	270		Ϋ́		
14734	2/26/2017	12:51	11 SCT055	10	43	6.1	32	20	290		Ÿ		
14734	2/26/2017	13:51	11 SCT055	10	44	6.7	32	10	280			2/26/2017	13:50
14734	2/26/2017	14:51	11 SCT060	10	44	6.7	31	15	300				. 3.00
14734	2/26/2017	15:51	11 FEW065	10	43	6.1	31	18	260		Υ	2/26/2017	15:00
14734	2/26/2017	16:51	11 SCT060	10	41	5	36	20	260		Ý		
14734	2/26/2017	17:51	11 SCT060	10	40	4.4	38	18	250		Υ		
14734	2/26/2017	18:51	11 BKN060	10	39	3.9	39	16	260			2/26/2017	18:50
14734	2/26/2017	19:51	11 FEW060	10	38	3.3	41	13	270				
14734	2/26/2017	20:51	11 CLR	10	37	2.8	41	10	280				
14734	2/26/2017	21:51	11 CLR	10	37	2.8	41	7	250				
14734	2/26/2017	22:51	11 CLR	10	35	1.7	44	7	250				
14734	2/26/2017	23:51	11 CLR	10	33	0.6	52	7	220				
14734	2/27/2017	0:51	11 CLR	10	33	0.6	54	3	180				
14734	2/27/2017	1:51	11 CLR	10	33	0.6	56	0	0				
14734	2/27/2017	2:51	11 CLR	10	33	0.6	56	3	200				
14734	2/27/2017	3:51	11 CLR	10	31	-0.6	61	6	220				
14734	2/27/2017	4:51	11 CLR	10	31	-0.6	61	7	230				
14734	2/27/2017	5:51	11 CLR	10	30	-1.1	64	9	210				
14734 14734	2/27/2017	6:51 7:51	11 FEW100 FEW260	10 10	30 35	-1.1 1.7	64 57	6 8	210 220				
14734	2/27/2017 2/27/2017	8:51	11 FEW100 BKN260 11 FEW100 BKN260	10	39	3.9	53	o 7	210				
14734	2/27/2017	9:51	11 FEW100 BKN260	10	45	7.2	44	14	220				
14734	2/27/2017	10:51	11 FEW100 SCT230 BKN	10	49	9.4	38	17	230				
14734	2/27/2017	11:51	11 FEW100 SCT220 OVC	10	52	11.1	34	13	220				
14734	2/27/2017	12:51	11 FEW100 SCT220 OVC	10	54	12.2	26	11	230				
14734	2/27/2017	13:51	11 FEW110 SCT150 SCT	10	54	12.2	24	16	230				
14734	2/27/2017	14:51	11 SCT095 OVC260	10	54	12.2	25	16	230				
14734	2/27/2017	15:51	11 FEW060 BKN090 OV(10	54	12.2	28	10	220				
14734	2/27/2017	16:51	11 FEW060 BKN090 BKN	10	53	11.7	30	14	250				
14734	2/27/2017	17:51	11 FEW090 SCT120 SCT	10	52	11.1	37	20	240		Υ	2/27/2017	17:00
14734	2/27/2017	18:51	11 FEW090 BKN120 BKN	10	51	10.6	41	13	220			2/27/2017	18:50
14734	2/27/2017	19:51	11 FEW060 BKN095 BKN	10	50	10	43	9	230				
14734	2/27/2017	20:51	11 FEW080 SCT110 BKN	10	48	8.9	50	6	220				
14734	2/27/2017	21:51	11 FEW080 SCT110 BKN	10	46	7.8	56	3	210				
14734	2/27/2017	22:51	11 FEW080 BKN150 OV(10	47	8.3	54	3	190				
14734	2/27/2017	23:51	11 SCT080 BKN140 OVC	10	46	7.8	56	3	150				
14734	2/28/2017	0:51	11 BKN080 OVC140	10	45	7.2	58	3	190				
14734	2/28/2017	1:51	11 OVC090	10	46	7.8	56 50	0	170				
14734 14734	2/28/2017	2:51	11 OVC100	10 10	46 46	7.8 7.8	58 58	3 0	170 0				
14734	2/28/2017	3:51 4:51	11 BKN090 OVC130	10 10	46 46	7.8 7.8	58 58	0	0				
14734	2/28/2017 2/28/2017	4:51 5:51	11 OVC120 11 SCT095 OVC120	10	46 47	7.8 8.3	58 61	0	0				
14734	2/28/2017	6:51	11 SC1095 OVC120 11 FEW095 BKN110 BKN	10	47 47	8.3 8.3	63	3	80				
14734	2/28/2017	7:51	11 FEW095 BKN 110 BKN	10	48	8.9	66	0	0				
14734	2/28/2017	8:51	11 FEW030 3C 1083 BKN	10	50	10	61	7	70				
14734	2/28/2017	9:51	11 FEW080 SCT250	10	53	11.7	53	3 VR					
14734	2/28/2017	10:51	11 FEW250	10	56	13.3	49	6	70				
14734	2/28/2017	11:51	11 BKN250	10	58	14.4	51	7	90				
14734	2/28/2017	12:51	11 FEW035 BKN250	10	60	15.6	56	5	130				
14734	2/28/2017	13:51	11 FEW013 FEW230 BKI	10	58	14.4	70	9	110				
14734	2/28/2017	14:49	11 BKN009 OVC250	10	55	13	77	9	140				
14734	2/28/2017	14:51	11 BKN009 OVC250	10	55	12.8	80	9	140				
14734	2/28/2017	15:51	11 BKN006 OVC010	8	55	12.8	83	7	120				
14734	2/28/2017	16:02	11 BKN004 OVC009	5	54	12.2	83	9	130				
14734	2/28/2017	16:15	11 OVC004	2	53	11.7	86	7	100				
14734	2/28/2017	16:25	11 OVC003	0.25	53	11.7	86	7	100				
14734	2/28/2017	16:51	11 OVC002	0.25	52	11.1	93	10	100 T		Υ	2/28/2017	16:30
14734	2/28/2017	17:51	11 BKN002 OVC005	0.25	51	10.6	93	6	80 T		Υ		
14734	2/28/2017	18:40	11 BKN002 OVC005	1	51	10.6	93	6	100			2/28/2017	18:40
14734	2/28/2017	18:51	11 BKN003 OVC006	1	51	10.6	93	5 VR			Υ	2/28/2017	18:40
14734	2/28/2017	19:05	11 BKN003 OVC006	2.5	51	10.6	93	3	90			2/28/2017	19:00
4 470 4	2/28/2017	19:08	11 BKN003 BKN006 OVC	2.5	51	10.6	93	3	100				
14734 14734	2/28/2017	19:32	11 SCT003 BKN005 OVC	2.5	51	10.6	90	3	120				

HourlyObs

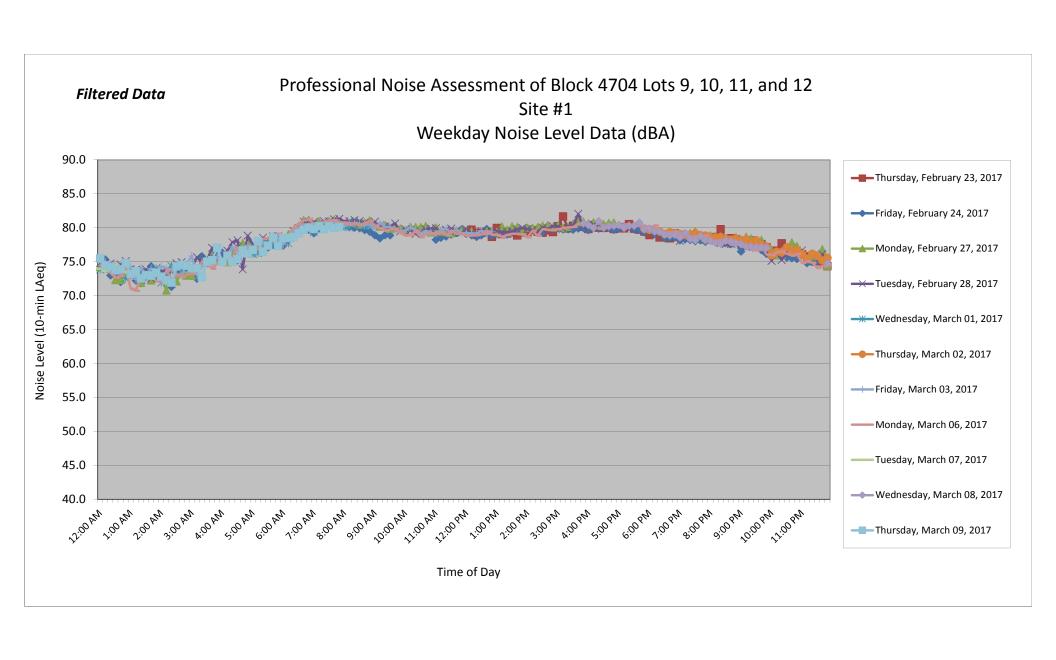
Month/Year: 2/2017 Station Location: NEWARK LIBERTY INTERNATIONAL AP (14734) Lat: 40.682 Lon: -74.169 Elev: 7 ft. above sea level

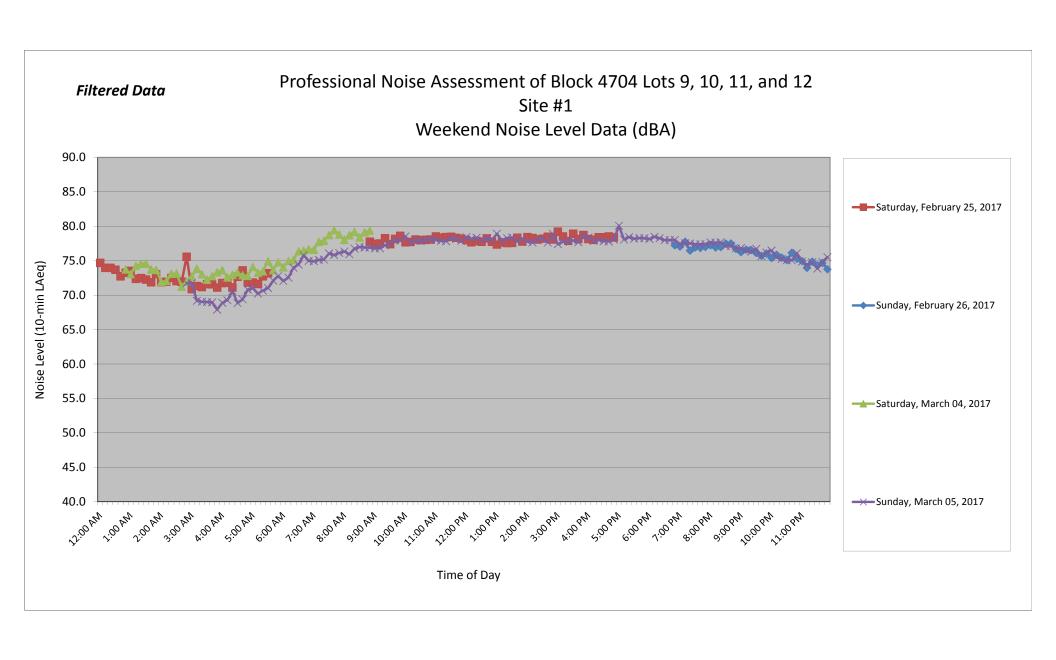
WBAN	Date	Time	StationTyr SkyCondition	SkyCondit Visibility	DryBulbFaren [DryBulbCe	RelativeHt W	indSpeedE	irection urlyPrecip	FilterOut?	Filter Date Filter Time
14734	2/28/2017	19:51	11 BKN005 BKN065 OVC	. 5	51	10.6	90	5	70		
14734	2/28/2017	20:09	11 SCT005 BKN065 OVC	8	50	10	90	5	60		
14734	2/28/2017	20:51	11 FEW005 BKN060 OV	10	50	10	90	3	70		
14734	2/28/2017	21:51	11 FEW007 BKN070 OV	10	51	10.6	86	0	0		
14734	2/28/2017	22:51	11 SCT045 OVC060	10	52	11.1	83	0	0		
14734	2/28/2017	23:51	11 FEW026 BKN045 OV	10	52	11.1	83	3	20		

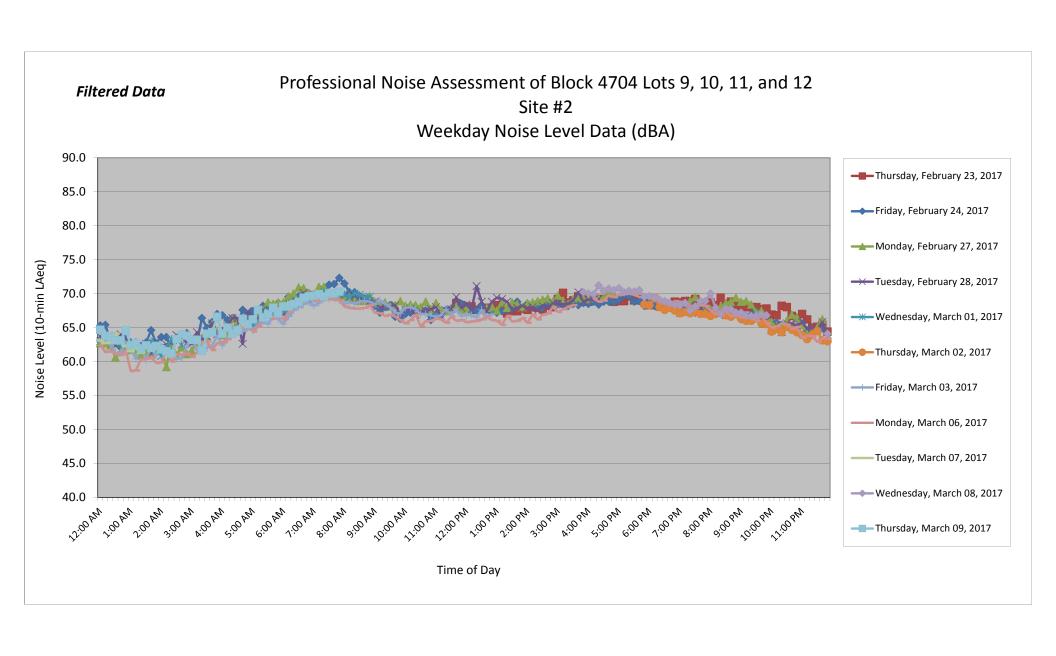
Month/Year: 3/2017 Station Location: NEWARK LIBERTY INTERNATIONAL AP (14734) Lat: 40.682 Lon: -74.169

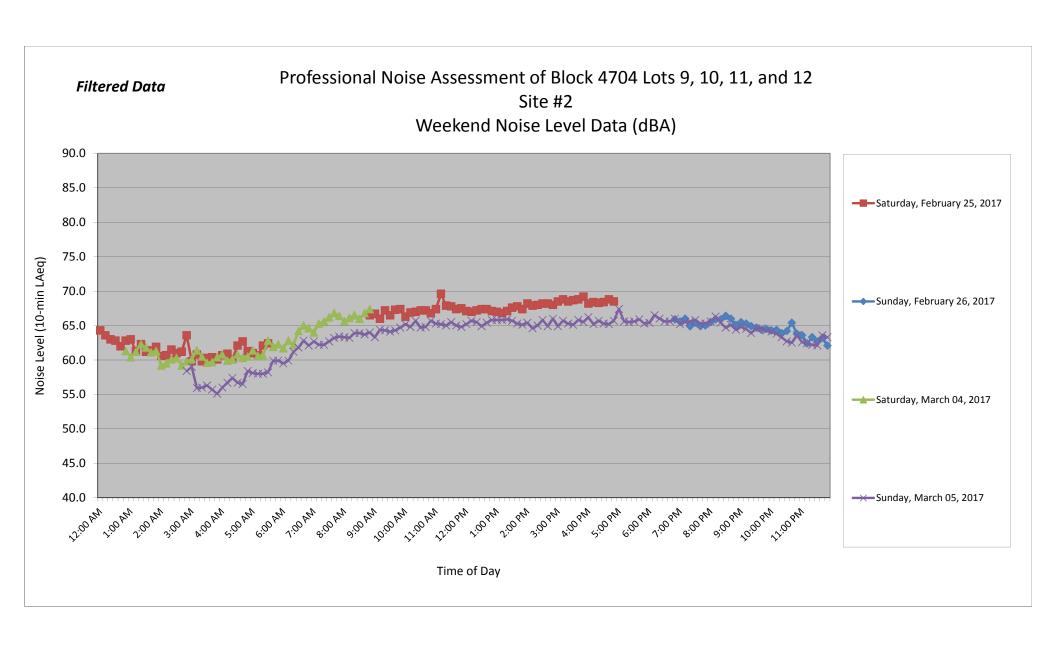
NA	bove sea level Date	Time	StationTyr	SkyCondition	SkyCondit Visibility	DryBulbFarer	DryBulbC	∢RelativeHu	. WindSpeed	Direction ur	lyPrecip	FilterOut?	Filter Date	Filter Ti
14734	3/1/2017	0:24	11 [BKN016 BKN021 OVC	10	53	11.7	86	0	0			•	
14734	3/1/2017	0:51		BKN016 BKN028 OVC	10		11.1			120				
14734	3/1/2017	1:51		BKN015 BKN025 OVC	10		11.1			90				
14734	3/1/2017	2:49		BKN010 OVC025	10		12		3	360		v	2/1/2017	2.50
14734 14734	3/1/2017 3/1/2017	2:51 3:17		BKN010 OVC025 BKN008 OVC015	10 10		11.1 12.2		3 5	330 7 250		Y	3/1/2017 3/1/2017	2:50 3:10
14734	3/1/2017	3:51		BKN008 OVC015	10		12.2		0	0		Υ	3/1/2017	3:20
14734	3/1/2017	4:51		OVC008	10		13.3		5	170		•	3/1/2017	4:50
4734	3/1/2017	5:49		SCT008 OVC012	10		14			190			0, 1,2011	
4734	3/1/2017	5:51		SCT008 OVC012	10		14.4		7	190				
4734	3/1/2017	6:51		FEW008 OVC012	10		14.4		9	190				
14734	3/1/2017	7:10		BKN008 OVC011	10		14.4		10	180				
14734	3/1/2017	7:51	11 (OVC008	8	59	15	90	9	220				
14734	3/1/2017	8:38	11 \$	SCT008 OVC011	8	59	15	90	14	220				
14734	3/1/2017	8:51	11 1	FEW008 OVC010	8	59	15	90	9	210				
14734	3/1/2017	9:51		FEW007 OVC014	9		16.1		10	200 T		Υ	3/1/2017	9:00
14734	3/1/2017	10:51		FEW007 OVC014CB	9		15.6		11	230	0.05	Υ		
14734	3/1/2017	10:58		SCT006 OVC012CB	1.75		15.6		11	250			3/1/2017	10:50
14734	3/1/2017	11:09		SCT006 OVC012CB	2		15.6		11	230				
4734	3/1/2017	11:24		FEW006 BKN014CB (2		15			210				
14734	3/1/2017	11:35		FEW006 SCT015CB (4		15.6			220				
14734	3/1/2017 3/1/2017	11:49		FEW009 SCT017 OV	6		16		5	210 190	0.11	Υ	3/1/2017	11:50
4734 4734		11:51		FEW009 SCT017 OV(6		15.6				0.11	ī		12:00
4734	3/1/2017 3/1/2017	12:02 12:51		FEW011 BKN023 OV(FEW012 SCT018 OV(7		15.6 17.2		7	190 190 T		Υ	3/1/2017 3/1/2017	12:00
4734	3/1/2017	13:51		SCT014 OVC023	8		18.9		14	210			3/1/2017	13:50
4734	3/1/2017	14:33		SCT014 OVC023 SCT029 OVC250	10		21.1		11	210			5, 1/2017	13.30
4734	3/1/2017	14:51		SCT029 OVC230 SCT031 SCT180 OVC	10		22.2			220		Υ	3/1/2017	14:40
4734	3/1/2017	15:51		SCT031 SCT100 OVC	9		21.7			220 T		Ÿ	3, 1, 2011	
4734	3/1/2017	16:51		FEW035 SCT050 BKN	10		21.7			210 <i>T</i>		Ϋ́		
4734	3/1/2017	17:51		FEW025 FEW090 SC	10		21.1		17	230			3/1/2017	17:50
4734	3/1/2017	18:51		BKN180 OVC250	10		20.6		25	230		Υ	3/1/2017	18:00
4734	3/1/2017	19:51	11 (OVC200	10	68	20	57	17	220			3/1/2017	19:50
4734	3/1/2017	20:51	11 5	SCT180 OVC250	10	66	18.9	59	20	230		Υ	3/1/2017	20:00
4734	3/1/2017	21:51	11 5	SCT170 OVC240	10		18.9		18	230		Υ		
4734	3/1/2017	22:51		FEW150 OVC240	10		18.3		21	220		Υ		
1734	3/1/2017	23:51		FEW060 SCT180 BKN	10		17.8		21	220		Υ		
4734	3/2/2017	0:51		FEW060 SCT180 BKN	10		17.8		18	220		Υ		
4734	3/2/2017	1:51		SCT044 BKN060 BKN	10		16.7		23	250 T		Υ		
4734	3/2/2017	2:51		BKN070 BKN100	10		15		30	260 T		Y		
4734	3/2/2017	3:51		SCT085 BKN100	10		12.8		28	250		Y		
4734	3/2/2017	4:51		FEW065 SCT110	10		11.1		29	270		Υ	0/0/0047	
4734	3/2/2017	5:51		FEW065 FEW110	10		10		17	260		V	3/2/2017	5:50
4734 4734	3/2/2017 3/2/2017	6:51 7:51		FEW070 FEW150 FEW070 FEW250	10 10		8.9 7.8		33 37	260 270		Y Y	3/2/2017	6:00
4734 4734	3/2/2017	8:41		FEW070 FEW250	10		7.8			270		Ϋ́		
4734	3/2/2017	8:51		FEW070 FEW250	10		7.8			270		Ϋ́		
4734	3/2/2017	9:51		FEW050	10		7.8		34	270		Ý		
4734	3/2/2017	10:51		FEW055	10		8.9			270		Ý		
4734	3/2/2017	11:51		FEW060	10		8.9			290		Ϋ́		
4734	3/2/2017	12:51		FEW060	10		9.4		28	290		Ϋ́		
4734	3/2/2017	13:51		FEW065	10		9.4			300		Υ		
4734	3/2/2017	14:51		FEW065	10		10		24	300		Υ		
4734	3/2/2017	15:51		FEW065	10		8.3		31	280		Υ		
4734	3/2/2017	16:51	11 1	FEW060	10	45	7.2	27	22	300		Υ		
4734	3/2/2017	17:51	11	FEW060	10	43	6.1	26	16	310			3/2/2017	17:5
4734	3/2/2017	18:51		FEW060	10		5.6		14	320				
4734	3/2/2017	19:51	11 (10		5			300				
1734	3/2/2017	20:51	11 (10		4.4			300				
1734	3/2/2017	21:51		CLR	10		3.3		13	290				
1734	3/2/2017	22:51		CLR	10		2.8		13	290				
4734	3/2/2017	23:51		CLR	10		2.2		11	300				
1734	3/3/2017	0:51	11 (10		1.1			300				
1734 1724	3/3/2017	1:51	11 (10 10		1.1			320				
4734 4734	3/3/2017 3/3/2017	2:51 3:51	11 (CLR	10 10		-0.6			300 300				
1734 1734	3/3/2017	4:51		CLR	10		-0.6			290				
4734 4734	3/3/2017	5:51		CLR	10		-1.1		14	290				
4734	3/3/2017	6:51		FEW055	10		-1.1		8	290				
4734	3/3/2017	7:51		FEW055	10		0			270				
4734	3/3/2017	8:51		FEW055	10		0.6			310				
4734	3/3/2017	9:51		FEW055	10		1.7		14	280				
4734	3/3/2017	10:51		FEW055 SCT090	10		2.8			270				
1734	3/3/2017	11:51		SCT070 SCT090	10		3.3		15	310				
1734	3/3/2017	12:51		SCT070 BKN090	10	41	5			270				
1734	3/3/2017	13:51		SCT075 BKN095	10	40	4.4	18	21	310		Υ	3/3/2017	13:0
4734	3/3/2017	14:51		FEW075 BKN085	10		3.3		20	310		Υ		
4734	3/3/2017	15:51	11	FEW050 SCT080 BKN	10		3.9		16	320			3/3/2017	15:5
4734	3/3/2017	16:51		FEW050 FEW075 SC	10		2.8		21	300		Υ	3/3/2017	16:0
4734	3/3/2017	17:51		FEW050 BKN070 BKN	10		1.1			270		Υ		
4734	3/3/2017	18:51		FEW045 SCT080	10		0			280			3/3/2017	18:5
4734	3/3/2017	19:51		FEW035 BKN055 BKN	10		0			320 T		Υ	3/3/2017	19:0
4734	3/3/2017	20:51		FEW040 SCT100	10		-1.1			310		Y		
4734	3/3/2017	21:51		FEW045	10		-2.2			320		Υ		
4734	3/3/2017	22:51		FEW040	10		-3.3			300		Y		
4734	3/3/2017	23:51		SCT060	10		-3.9			320		Υ	_,	
4734	3/4/2017	0:51		FEW060	10		-4.4			320			3/4/2017	0:50
4734	3/4/2017	1:51	11	FEW050	10	23	-5	42	14	310				

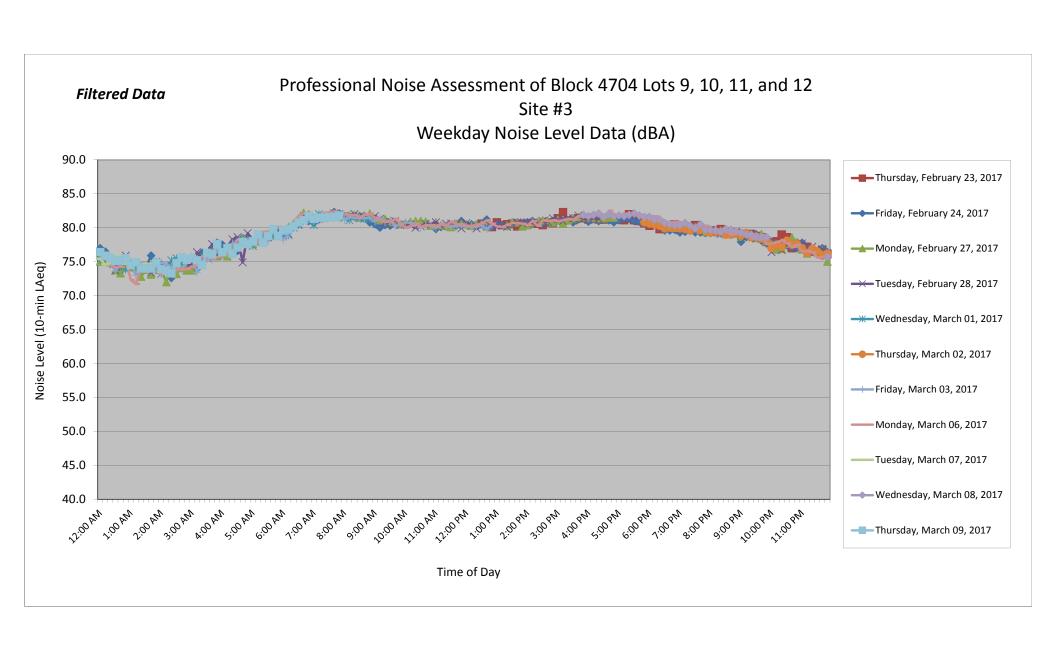
Month/Year: 3/2017 Station Location: NEWARK LIBERTY INTERNATIONAL AP (14734) Lat: 40.682 Lon: -74.169 Elev: 7 ft. above sea level


	bove sea level												
	Date	Time	StationTyr SkyCondition	SkyCondit Visibility						rlyPrecip	FilterOut?	Filter Date	Filter Time
14734	3/4/2017	3:51	11 FEW050	10	22	-5.6	42	13	310				
14734	3/4/2017	4:51	11 CLR 11 FEW050	10	21 21	-6.1	45	11	280 290				
14734 14734	3/4/2017 3/4/2017	5:51 6:51	11 FEW050	10 10	22	-6.1 -5.6	45 44	13 10	280				
14734	3/4/2017	7:51	11 FEW042 BKN060	10	24	-4.4	44	10	270				
14734	3/4/2017	8:51	11 FEW045 SCT055	10	25	-3.9	40	9	290				
14734	3/4/2017	9:51	11 BKN060	10	28	-2.2	34	21	310		Υ	3/4/2017	9:00
14734	3/4/2017	10:51	11 BKN055 BKN070	10	29	-1.7	34	17	310			3/4/2017	10:50
14734	3/4/2017	11:51	11 SCT055 BKN065	10	29	-1.7	31	22	320		Υ	3/4/2017	11:00
14734	3/4/2017	12:51	11 SCT060 BKN075	10	31	-0.6	27	21	300		Y		
14734	3/4/2017	13:51	11 BKN065 BKN075	10	31	-0.6	27	26	290		Y		
14734	3/4/2017	14:51	11 BKN065 BKN075	10	29	-1.7	27	29	300		Y Y		
14734 14734	3/4/2017 3/4/2017	15:51 16:51	11 SCT070 11 FEW070	10 10	30 29	-1.1 -1.7	23 18	29 23	300 310		Ϋ́Υ		
14734	3/4/2017	17:51	11 FEW070	10	26	-3.3	20	21	320		Ÿ		
14734	3/4/2017	18:51	11 FEW070	10	24	-4.4	23	26	330		Ý		
14734	3/4/2017	19:51	11 CLR	10	22	-5.6	26	24	310		Υ		
14734	3/4/2017	20:51	11 CLR	10	21	-6.1	26	21	330		Υ		
14734	3/4/2017	21:51	11 CLR	10	19	-7.2	32	18	320		Y		
14734	3/4/2017	22:51	11 CLR	10	18	-7.8	32	16	320			3/4/2017	22:50
14734	3/4/2017	23:51	11 CLR	10	17	-8.3	34	15	320				
14734 14734	3/5/2017 3/5/2017	0:51 1:51	11 CLR 11 CLR	10	16 16	-8.9 -8.9	33 33	13 18	330 330		Υ	3/5/2017	1:00
14734	3/5/2017	2:51	11 CLR	10	16	-8.9	33	13	320			3/5/2017	2:50
14734	3/5/2017	3:51	11 CLR	10	15	-9.4	37	9	310			0/0/2011	2.00
14734	3/5/2017	4:51	11 CLR	10	15	-9.4	40	11	290				
14734	3/5/2017	5:51	11 CLR	10	15	-9.4	40	10	310				
14734	3/5/2017	6:51	11 CLR	10	15	-9.4	38	9	320				
14734	3/5/2017	7:51	11 CLR	10	17	-8.3	30	10	320				
14734	3/5/2017	8:51	11 CLR	10	21	-6.1	23	10	340				
14734	3/5/2017	9:51	11 FEW250	10	24	-4.4	19	10	340				
14734 14734	3/5/2017 3/5/2017	10:51 11:51	11 FEW250 11 FEW200 FEW250	10 10	28 31	-2.2 -0.6	15 13	15 11	320 320				
14734	3/5/2017	12:51	11 FEW220 FEW260	10	33	0.6	13	11	320				
14734	3/5/2017	13:51	11 FEW220 SCT260	10	36	2.2	13	13	290				
14734	3/5/2017	14:51	11 FEW220 FEW260	10	36	2.2	11	8	300				
14734	3/5/2017	15:51	11 FEW250	10	37	2.8	11	10	270				
14734	3/5/2017	16:51	11 FEW250	10	37	2.8	11	14	300				
14734	3/5/2017	17:51	11 FEW250	10	35	1.7	13	13	280				
14734 14734	3/5/2017 3/5/2017	18:51 19:51	11 FEW250 11 FEW250	10 10	35 31	1.7 -0.6	14 26	9	290 20				
14734	3/5/2017	20:51	11 FEW250	10	31	-0.6	20	8	360				
14734	3/5/2017	21:51	11 CLR	10	29	-1.7	25	7	10				
14734	3/5/2017	22:51	11 CLR	10	26	-3.3	31	7	360				
14734	3/5/2017	23:51	11 CLR	10	27	-2.8	32	8	30				
14734	3/6/2017	0:51	11 CLR	10	27	-2.8	37	0	0				
14734	3/6/2017	1:51	11 SCT250	10	27	-2.8	32	0	0				
14734	3/6/2017	2:51	11 SCT250	10	27	-2.8	35	5	30				
14734	3/6/2017 3/6/2017	3:51 4:51	11 SCT250 11 SCT250	10 10	22 22	-5.6 -5.6	52 52	7 8	360 20				
14734 14734	3/6/2017	5:51	11 FEW150 SCT250	10	23	-5.6 -5	48	8	20				
14734	3/6/2017	6:51	11 FEW110 SCT250	10	24	-4.4	46	6	10				
14734	3/6/2017	7:51	11 FEW110 FEW250	10	28	-2.2	36	9	20				
14734	3/6/2017	8:51	11 FEW110 SCT250	10	31	-0.6	30	5	20				
14734	3/6/2017	9:51	11 SCT260	10	34	1.1	23	5	90				
14734	3/6/2017	10:51	11 FEW150 SCT260	10	36	2.2	24	0	0				
14734	3/6/2017	11:51	11 FEW120 SCT250	10	41	5	23	6	220				
14734	3/6/2017	12:51	11 FEW120 BKN250	10	43	6.1	25 31	6 \ 10					
14734 14734	3/6/2017 3/6/2017	13:51 14:51	11 FEW100 FEW140 B 11 BKN110 BKN150 BK		42 42	5.6 5.6	38	8	150 130				
14734	3/6/2017	15:51	11 BKN110 OVC270	10	41	5.0	43	9	140				
14734	3/6/2017	16:51	11 OVC110	10	40	4.4	51	10	140				
14734	3/6/2017	17:51	11 OVC100	10	40	4.4	51	7	140				
14734	3/6/2017	18:51	11 OVC100	10	41	5	45	8	150				
14734	3/6/2017	19:51	11 OVC110	10	41	5	41	8	170				
14734	3/6/2017	20:51	11 FEW065 BKN080 O		41	5	43	7	170				
14734 14734	3/6/2017 3/6/2017	21:51 22:51	11 SCT060 OVC080 11 BKN060 OVC080	10 10	41 41	5 5	47 49	6 7	160 170				
14734	3/6/2017	22:51	11 BKN060 OVC080	10	41	5	49	6	170				
14734	3/6/2017	23:51	11 OVC060	10	42	5.6	53	6	170				
14734	3/7/2017	0:51	11 OVC050	10	42	5.6	58	5	150				
14734	3/7/2017	1:51	11 OVC055	10	42	5.6	60	3	130				
14734	3/7/2017	2:51	11 OVC060	10	42	5.6	65	0	0 7		Υ	3/7/2017	2:00
14734	3/7/2017	3:51	11 OVC060	10	43	6.1	73	0	0 7		Y		
14734	3/7/2017	4:51	11 OVC055	10	43	6.1	79	3	100	0.01	Y		
14734 14734	3/7/2017 3/7/2017	5:51 6:51	11 OVC045 11 OVC050	10 10	44 45	6.7 7.2	83 83	5 3	110 7 110 7		Y Y		
14734	3/7/2017	6:51 7:51	11 OVC050 11 FEW045 BKN055 O		45 46	7.2	83	3	100 7		Ϋ́Υ		
14734	3/7/2017	8:51	11 FEW045 BKN065 O		47	8.3	83	3 \		0.01	Ϋ́		
14734	3/7/2017	9:51	11 FEW015 OVC070	5	47	8.3	89	3	120	0.04	Ý		
14734	3/7/2017	10:51	11 FEW010 OVC065	7	48	8.9	93	0	0	0.02	Ý		
14734	3/7/2017	11:51	11 FEW010 BKN045 O		50	10	90	3 \		0.01	Υ		
14734	3/7/2017	12:51	11 FEW010 BKN032 O		51	10.6	86		VR 7		Y		
14734	3/7/2017	13:51	11 FEW010 BKN032 O		51	10.6	83	6	90 7		Y		
14734	3/7/2017	14:51	11 FEW035 SCT070 BH		50	10	86	6	90 7		Y Y		
14734	3/7/2017	15:51 16:51	11 FEW040 SCT100 O		50 50	10 10	83 80	5 5	90 7 80		1	3/7/2017	16:50
14734 14734	3/7/2017 3/7/2017	16:51 17:51	11 FEW040 SCT110 BF 11 FEW070 BKN130 BF		48	8.9	80 86	3	50			3/7/2017	10.50
14734	3/7/2017	18:51	11 FEW060 SCT120 B		49	9.4	80	3	70				
, ,	-			•					-				


HourlyObs


Month/Year: 3/2017 Station Location: NEWARK LIBERTY INTERNATIONAL AP (14734) Lat: 40.682 Lon: 74.169


Elev: 7 ft.	above sea level											
WBAN	Date	Time	StationTyr SkyCondition	SkyCondit Visibility	DrvBulbFare	DrvBulbCel	RelativeΗι W	/indSpee _i dD	irection urlyPrecip	FilterOut?	Filter Date	Filter Time
14734		19:51	11 FEW060 BKN090 OV				83	3	70 T	Y	3/7/2017	19:00
14734	3/7/2017	20:51	11 FEW040 BKN080 OV	. 10	49	9.4	83	0	0		3/7/2017	20:50
14734		21:51	11 FEW040 SCT065 BKN				83	0	0 T	Υ	3/7/2017	21:00
14734		22:51	11 FEW050 BKN110 OV				80	0	0 T	Υ		
14734		23:51	11 FEW045 BKN060 BKI				75	8	190 <i>T</i>	Υ		
14734		0:51	11 SCT065 OVC110	10			75	9	180 T	Υ		
14734		1:51	11 FEW065 OVC100	10			75	9	190 <i>T</i>	Υ		
14734		2:51	11 BKN095 OVC190	10			75	10	190		3/8/2017	2:50
14734		3:51	11 SCT065 BKN110 OV	10	58	14.4	75	14	200			
14734		4:47	11 BKN027 OVC040	10			90	11	220			
14734		4:51	11 BKN027 OVC038	10			86	14	220 T	Υ	3/8/2017	4:50
14734	3/8/2017	5:51	11 BKN026 OVC034	8	58	14.4	81	18	250 T	Υ		
14734		6:11	11 SCT015 BKN023 OV				77	23	300	Υ		
14734	3/8/2017	6:47	11 FEW015 BKN039 OV	10	50	10	66	15	310		3/8/2017	6:40
14734	3/8/2017	6:51	11 FEW015 BKN039 OV	. 10	50	10	69	16	310 T	Υ	3/8/2017	6:50
14734		7:51	11 OVC070	10	50	10	64	11	280		3/8/2017	7:50
14734		8:51	11 FEW030 BKN090	10	50	10	61	15	270 T	Υ	3/8/2017	8:00
14734	3/8/2017	9:51	11 FEW035 SCT100 BKN	10	52	11.1	50	15	290		3/8/2017	9:50
14734		10:51	11 FEW055 SCT110	10			39	13	290			
14734	3/8/2017	11:51	11 FEW055 FEW110	10	58	14.4	27	20	260	Υ	3/8/2017	11:00
14734	3/8/2017	12:51	11 FEW065 FEW120	10	60	15.6	25	16	250		3/8/2017	12:50
14734	3/8/2017	13:51	11 FEW070	10	61	16.1	21	23	270	Υ	3/8/2017	13:00
14734	3/8/2017	14:51	11 SCT090	10	62	16.7	21	25	240	Υ		
14734	3/8/2017	15:51	11 FEW095 SCT250	10	60	15.7	20	14	270		3/8/2017	15:50
14734		16:51	11 FEW080 SCT250	10	60	15.8	19	14	250			
14734	3/8/2017	17:51	11 FEW070 FEW250	10	58	14.7	20	8	230			
14734	3/8/2017	18:51	11 FEW070	10	58	14.5	21	10	230			
14734	3/8/2017	19:51	11 CLR	s 10	58	14.2	22	8	220			
14734	3/8/2017	20:51	11 CLR	s 10	55	12.7	24	7	230			
14734		21:51	11 FEW050	10	55	12.8	23	10	260			
14734	3/8/2017	22:51	11 FEW050	10	55	13	21	18	260	Υ	3/8/2017	22:00
14734	3/8/2017	23:51	11 CLR	s 10	56	13.1	21	11	250		3/8/2017	23:50
14734	3/9/2017	0:51	11 CLR	s 10	55	12.6	19	16	270			
14734	3/9/2017	1:51	11 CLR	s 10	54	12.2	20	11	260			
14734	3/9/2017	2:51	11 CLR	s 10	54	12.4	20	16	270			
14734	3/9/2017	3:51	11 CLR	s 10	54	12	21	14	270			
14734	3/9/2017	4:51	11 CLR	s 10	52	11.3	25	14	270			
14734	3/9/2017	5:51	11 CLR	s 10	52	11.1	23	10	260			
14734	3/9/2017	6:51	11 CLR	s 10	51	10.6	23	14	270			
14734	3/9/2017	7:51	11 FEW250	10	53	11.6	21	11	270			
14734	3/9/2017	8:51	11 FEW100	10			18	22	300	Υ	3/9/2017	8:00
14734	3/9/2017	9:51	11 FEW100 FEW250	10			16	15	290		3/9/2017	9:50
14734		10:51	11 FEW100 FEW250	10			13	18	270	Υ	3/9/2017	10:00
14734		11:51	11 FEW100	10			13	20	300	Υ		
14734		12:51	11 FEW100 FEW250	10			12	15	290		3/9/2017	12:50
14734		13:46	11 FEW100 FEW250	10			15	25	260	Y	3/9/2017	13:00
14734	3/9/2017	13:51	11 FEW100 FEW250	10	63	17.2	15	23	260	Υ		
14734		14:51	11 FEW100 FEW250	10			15	22	280	Υ		
14734		15:51	11 SCT100	10			15	24	280	Υ		
14734		16:51	11 SCT100 SCT150 BKN				16	22	280	Υ		
14734		17:49	11 SCT100 BKN150 BKN				18	15	350		3/9/2017	17:40
14734		17:51	11 SCT100 BKN150 BKN				18	15	340			
14734		18:51	11 SCT100 BKN140 BKN				27	14	350			
14734		19:51	11 FEW090 BKN130 BKI				26	17	320			
14734		20:51	11 SCT080 OVC110	10			26	15	330			
14734		21:51	11 SCT080 OVC110	10			35	14	350			
14734		22:51	11 FEW070 OVC100	10			36	7	350			
14734	3/9/2017	23:51	11 FEW070 OVC100	10	49	9.4	38	10	340			


APPENDIX D FILTERED NOISE LEVEL DATA GRAPHS

