ш

Traffic Impact Study

Hudson Street Parking Garage Block 3809, Lots 12 and 13 Village of Ridgewood, Bergen County, New Jersey

October 15, 2015

Prepared For Tim Tracy Desman Design Management 49 West 37th Street, 5th Floor New York, NY 10018

Prepared By

Maser Consulting P.A. Corporate Headquarters 331 Newman Springs Road Red Bank, NJ 07701

732.383.1950

Certificate of Authorization: 24GA27986500

John J. Jahr, PTP, TSOS

Maure Lacket

S. Maurice Rached, P.E., PTOE N.J. Professional Engineer License No. 37963

www.maserconsulting.com

MC Project No. 15001714A

Table of Contents

I.	INTRODUCTION	1
II.	EXISTING CONDITIONS	4
III.	2015 EXISTING TRAFFIC CONDITIONS	
IV.	HCM CAPACITY ANALYSIS	
V.	TRIP GENERATION & DISTRIBUTION	9
VI.	2015 FULL BUILD TRAFFIC CONDITIONS	13
VII.		
VIII.	PARKING ANALYSIS	20
IX.	SUMMARY AND CONCLUSIONS	21
FIG	URES	
	re 1 – Site Location Map	2
	re 2 – Site Plan	
_	re 3 – 2015 AM & PM Peak Hour Traffic Volumes	
Figu	re 4 – 2015 AM & PM Peak Hour LOS/Delay	8
Figu	re 5 – Trip Distribution Percentages	11
Figu	re 6 – 2015 AM & PM Site Generated Trips	12
Figu	re 7 – 2015 Full Build AM & PM Peak Hour Traffic Volumes	14
Figu	re 8 – 2015 Full Build AM & PM Peak Hour LOS/Delay	15
Figu	re 9 – 2015 Full Build AM & PM Peak Hour Traffic Volumes (Reversed Flow)	18
	re 10 – 2015 Full Build AM & PM Peak Hour LOS/Delay (Reversed Flow)	
TAI	BLES	
Tabl	e 1 – 2015 Existing Traffic Volumes	5
	e 2 – HCM 2000: Signalized and Unsignalized LOS/Delay Criteria	
	e 3 – Peak Hour Level of Service and Delay Comparison	
	e 4– Peak Hour Level of Service and Delay Comparison	
ДРІ	PENDICES	
	ENDIX AVILLALGE OF RIDGEWOO	П ТДУ M A D
	ENDIX A:	
	ENDIX C	

I. INTRODUCTION

This Traffic Impact Study is submitted in association with the inclusion of the proposed Hudson Street Parking Garage within the existing property, known as Block 3809, Lots 12 & 13 in the Village of Ridgewood, Bergen County, New Jersey. The existing property is located along 21 – 35 Hudson Street between South Broad Street and Prospect Street. The overall property consists of approximately 0.8 acres of land and currently contains a surface parking lot. The site borders the downtown central business district to the north, some commercial/retail property to the west, another surface parking lot to the east and a church to the south. The site location map is included within **Figure 1** on the following page and the Village of Ridgewood Tax Map is included in **Appendix A** of this report.

The proposed development will consist of a single building containing five floors with a total gross square footage of 138,380 SF. The total number of parking spaces within the proposed parking garage is 412. Access to the parking garage will be from Hudson Street, via a two-way, stop controlled driveway. Based on these characteristics, the site will be classified as a parking facility for the traffic operations analysis. Since this site is neither a trip nor parking generator, the surrounding land uses and operation of the surrounding surface parking lots were examined in order to quantify the operation of the proposed facility. The overall site plan is detailed within **Figure 2** of this report.

This study presents an evaluation of the current and future traffic conditions in the vicinity of the site and provides an analysis of the traffic and parking impacts of the proposed development. Specific elements included in this study are:

- ☐ An inventory of the roadway facilities in the vicinity of the project, including the existing physical and traffic operating characteristics;
- □ Data Collection of the 2015 Existing Traffic Conditions;
- □ Site Generated Trips using the ITE Trip Generation Manual, 9th Edition;
- □ Trip Distribution and Assignment of the new vehicle trips;
- □ Full Build Traffic Volumes for the Full-Build year of 2018;
- □ Peak Hour Capacity Analysis for the Existing and Full Build Conditions;
- □ Analysis of Internal Vehicular Circulation and Safety;
- □ Analysis of On-Site Parking Requirements; and,
- □ Summary and Conclusions.

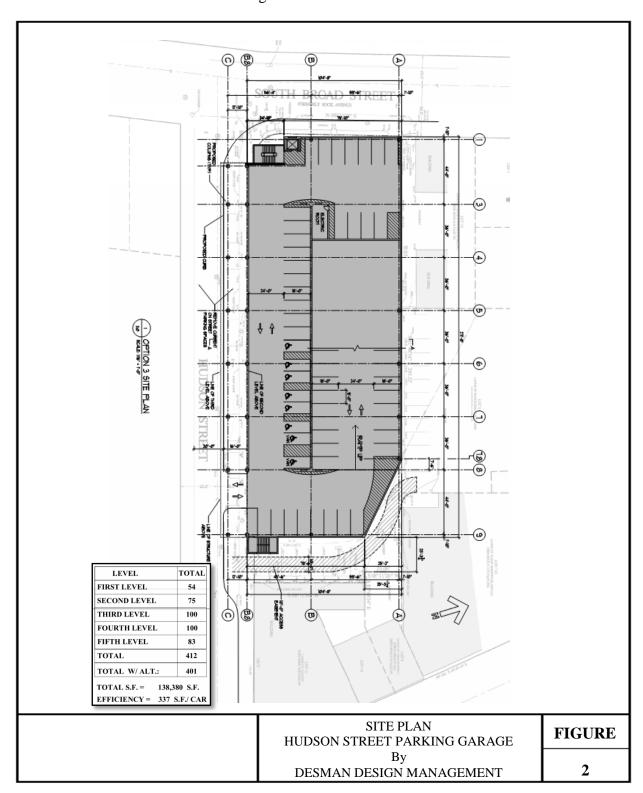


Figure 1 – Site Location Map

Figure 2 – Site Plan

II. EXISTING CONDITIONS

A field investigation was conducted adjacent to the project site to obtain an inventory of existing roadway conditions, posted traffic controls, adjacent land uses, lane configurations of the intersections in the study area, and existing vehicular and pedestrian traffic patterns. The following is a brief description of the roadways:

Hudson Street is an east-west oriented roadway which spans approximately 495 feet between South Broad Street and Prospect Street. In the project vicinity, the roadway provides a single, one-way travel lane in the westbound direction. Currently, the street ends at a stop controlled T-intersection with traffic allowed to make a right or left onto South Broad Street. The total roadway width measures approximately 30-feet with parking aisles on both sides of the travel way. The on-street parking is governed by parking meters. There is no posted speed limit on the roadway segment, but surrounding use dictates an enforceable speed limit of 25 MPH. It is noted that east of Prospect Street Hudson Street becomes Dayton Street. The proposed site is located on the north side of the roadway.

Prospect Street is a bi-directional, north-south oriented roadway which intersects Hudson Street / Dayton Street. In the project vicinity, the roadway provides two travel lanes, one northbound and one southbound. The total roadway width measures approximately 34-feet with parking aisles on both sides of the travel way. The on-street parking is governed by parking meters. There is no posted speed limit on the roadway segment, but surrounding use dictates an enforceable speed limit of 25 MPH. The roadway is unsignalized and flows freely at is intersection with Hudson Street / Dayton Street. Pedestrian cross walks are striped at all four corners of the aforementioned intersection.

South Broad Street is a bi-directional, north-south oriented roadway which intersects Hudson Street. The roadway forms a three-leg intersection with Hudson Street, where it is unsignalized and flows freely through the intersection. Metered street parking is present along the west side of the roadway north of Hudson Street, and along the east side of the roadway south of Hudson Street. The total roadway width measure approximately 36-feet.

III. 2015 EXISTING TRAFFIC CONDITIONS

To gain an understanding of the existing traffic conditions, Maser Consulting collected traffic data on at the intersections of **South Broad Street & Hudson Street** and **Prospect Street & Hudson Street** / **Dayton Street** on Wednesday, October 7, 2015. The data was collected using Manual Turning Movement Counts.

Automated Turning Movement Counts (ATCs) were conducted by Maser Consulting at both of the unsignalized intersections of **South Broad Street & Hudson Street** and **Prospect Street & Hudson Street / Dayton Street**. ATCs were counted during the weekday AM and PM peak hours of operation to coincide with the peak volumes experienced in and around the central business district area during these times. Therefore, the ATCs were conducted between the

4:45PM

5:45PM

16

17

5

25

18

Page 5 of 21

hours of 7:00AM and 9:00AM in the morning and between the hours of 3:00PM and 6:00PM in the evening.

Based on the traffic volumes observed, the intersection peak hours occurred from 7:30AM to 8:30AM and 4:45PM to 5:45PM for Prospect Street & Hudson Street / Dayton Street, and from 7:30AM to 8:30AM and 4:00PM to 5:00PM for South Broad Street & Hudson Street. The following table details the peak hour traffic volumes observed at the study interaction.

Prospect Street SB Dayton Street WB Prospect Street NB Hudson Street EB Peak Hour of Operation Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds 7:30AM 7 2 7 20 17 109 60 3 70 40 85 0 0 0 0 10 8:30AM

13

80

93

78

13

0

0

0

15

Table 1 − 2015 Existing Traffic Volumes

79

141

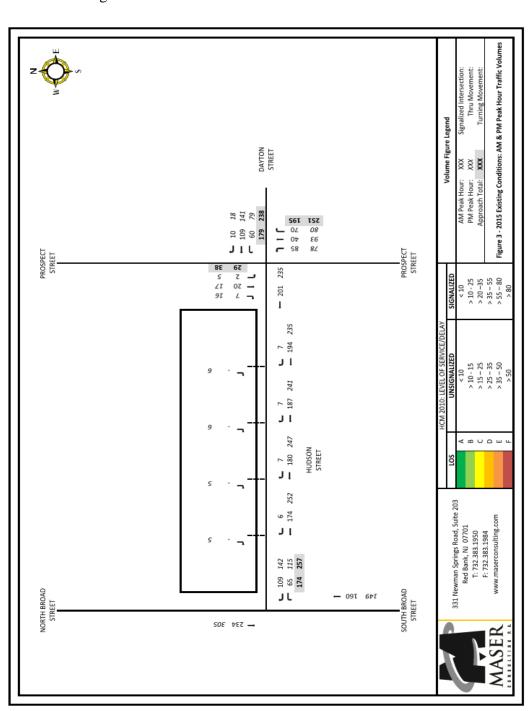
						I abi	<u> </u>	Conti	mica							
Peak Hour	Sout	th Broad	d Stree	t SB	Н	udson S	treet W	/B	Sout	th Broad	l Stree	t NB			-	
of Operation	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds
7:30AM 8:30AM	-	234	0	17	109	-	65	11	0	160	-	19	-	-	-	-
5:00PM 6:00PM	-	305	0	15	142	-	115	14	0	149	-	3	-	-	-	-

The peak hour factor (PHF) is a ratio which expresses the relationship between the peak fifteen minute flow rates and the full hourly volume. The PHF is calculated by multiplying the peak 15minute flow rate at an intersection by four and then dividing the intersection hourly volume by that value. PHFs in urban areas are usually observed between 0.80 and 0.98. These statistics indicate that the recorded traffic volumes approach the intersection consistently, with minimal interruption in the traffic stream. The formula for the peak hour factor is detailed below:

$$PHF = \frac{V}{4*V15}$$
 Where as;

PHFrepresents the Peak Hour Factor

V.....represents the total hourly Volume; and,


V15.....represents the peak fifteen minute Volume.

The intersection of Prospect Street & Hudson Street / Dayton Street experienced a PHF of 0.851 during the AM peak period and 0.916 during the PM peak period. The intersection of South Broad Street & Hudson Street experienced a PHF of 0.928 during the AM peak period and 0.936

during the PM peak period. These PHFs indicate consistent traffic progression during the peak hour, with no sudden increases in traffic during the fifteen minute intervals counted. **Figure 3** on the following page details the 2010 existing traffic volumes.

Figure 3 – 2015 AM & PM Peak Hour Traffic Volumes

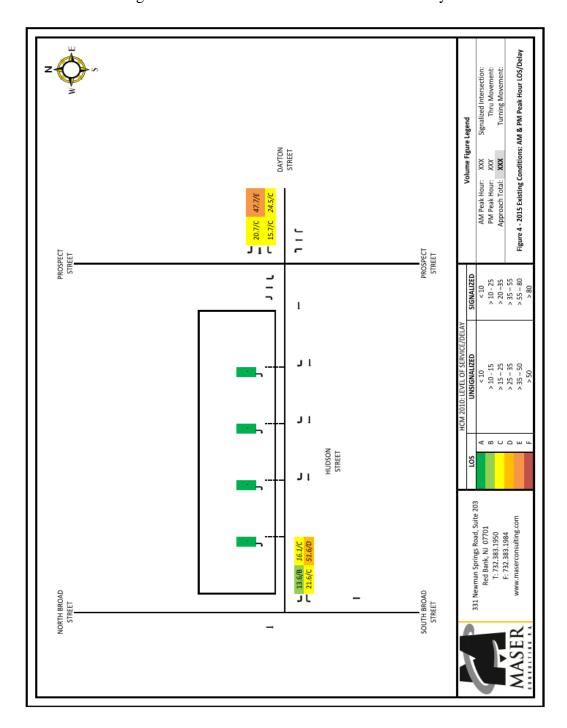
Page 7 of 21

IV. HCM CAPACITY ANALYSIS

The peak hour traffic operations within the project vicinity were evaluated at the study intersection. The analyses were performed using the latest version of Synchro Trafficware, Version 8.0; a traffic analysis and simulation program. The results of these analyses provide Level of Service (LOS), volume/capacity descriptions and average seconds of delay for the intersection movements.

The efficiency with which an intersection operates is a function of volume and capacity. The capacity of an intersection is the volume of vehicles it can accommodate during a peak hour. Level of Service is a qualitative measure describing operational conditions within a traffic stream in terms of traffic characteristics such as freedom to maneuver, traffic interruption, comfort and convenience. Six LOS are defined for each type of facility with analysis procedures available. Levels of Service range from "A" through "F", with "A" representing excellent conditions with no delays and failure and deficient operations denoted by Level "F". The HCS 2000 LOS criteria for intersections are summarized in **Table 2**.

Table 2 – HCM 2000: Signalized and Unsignalized LOS/Delay Criteria


Loyal of Camilea	Average Contro	l Delay (sec/veh)
Level of Service	Signalized Intersection	Unsignalized Intersection
Α	< 10	< 10
В	> 10 - 20	> 10 - 15
С	> 20 - 35	> 15 – 25
D	> 35 – 55	> 25 – 35
E	> 55 – 80	> 35 – 50
F	> 80	> 50

2015 EXISTING CONDITIONS HCM CAPACITY ANALYSIS

The existing peak hours of operation were evaluated at the study intersection for both AM and PM traffic volumes. The results of these analyses provide Level of Service and average seconds of delay for the intersection movements. In the existing condition, the main approaches of South Broad Street operate with LOS "A" in both peak periods. The Hudson Street minor approach operates with LOS "C" in the AM peak condition and LOS "D" in the PM peak condition. The main approaches of Prospect Street operate with LOS "A" in both peak periods. While the minor approach of Dayton Street operates with LOS "C" in the AM peak condition and LOS "E" in the PM peak condition. The existing operating service levels and delay are included on **Figure 4** on the following page.

Figure 4 – 2015 AM & PM Peak Hour LOS/Delay

Page 9 of 21

V. TRIP GENERATION & DISTRIBUTION

It was noted in our site visits that the proposed site is located in close proximity to the downtown business area of the Village of Ridgewood. It was also considered that the proposed use, a multistory parking structure, is not considered a generator of traffic or parking since users do not make trips for the sole purpose of parking. As such, we examined both the surrounding land uses as well as the surrounding surface parking lots in order to gain a better understanding as to the parking capacity and demand for those facilities in the area. Based upon our experience with parking facilities of this type in similar settings and the usage of the existing facilities in the surrounding area, we decided to utilize a factor of 0.5 trips per parking space for the proposed facility. This factor was deemed to be conservative for the purposes of our analysis as the surrounding surface lots were observed to be at approximately 50% of their capacity during peak hours and none of the surface lots appeared to approach their maximum capacity simultaneously. Thus, we justified that the site would operate at 50% capacity during both the AM and PM peak hours, or that a minimum of 206 of the proposed 412 parking spaces would be occupied during these times. This also indicates that the site could operate closer to or further from maximum capacity outside of the observed peak hours. It should also be noted that the available 84 parking stalls from the existing surface parking lot currently located at the proposed site were accounted for within our calculations for ambient traffic in our analysis.

TRIP DISTRIBUTION

Trip distribution methodology is developed based on a variety of factors. These factors include the size and type of land use generating trips, the existing travel patterns within the adjacent roadway network, adjacent land uses, and the proximity of major arterials within the project vicinity.

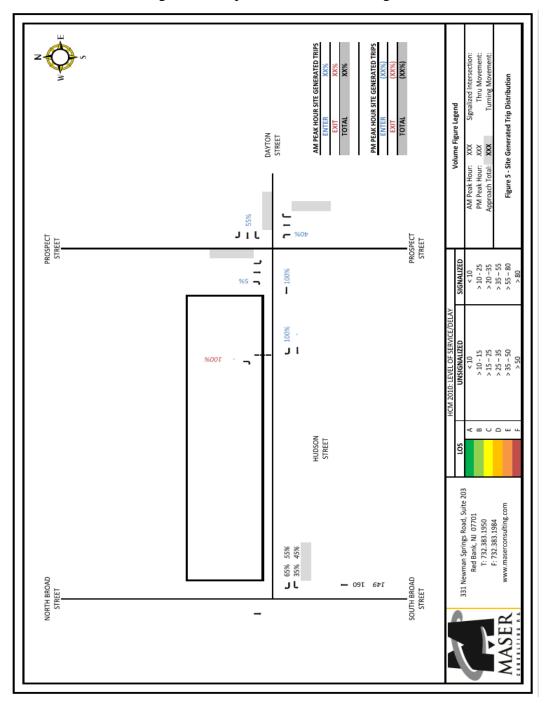
The location of the subject site requires all trips to enter/exit the site to/from the intersection of Prospect Street & Hudson Street / Dayton Street, with one potential access point. Based on the site location, vehicular traffic may be generated from points north, south and east of the intersection. Examining the roadway network, it is anticipated a majority of traffic will approach the site from the north and south due to the presence of C.R. 507, C.R. 509 and Route 17, the primary arterial in the project vicinity.

As a result, Maser Consulting proposed a trip distribution ratio of 60:40 for the proposed development, with 60% of trips generated to/from points north and 40% of trips generated to/from points south.

TRIP ASSIGNMENT

The proposed development only has one access driveway which is located on a one way street and will serve for both ingress and egress. This access driveway will be located along Hudson Street approximately 200 feet west from its intersection with Prospect Street. Similar to trip distribution, trip assignment is also a product of multiple factors. Characteristics such as proximity to parking, availability of traffic movements and distance from the destined external

Traffic Impact Study Hudson Street Parking Garage MC Project No.: 15001714A Page 10 of 21


roadway all impact a motorist's decision making process. Additionally, driver behavior varies between entering and exiting trips.

Since the site may only be accessed through Hudson Street which allows for one way circulation of traffic in a westbound travel direction, and there is only one access point to and from the site, we can say that 100% of incoming traffic will utilize the access point. As to the distribution of traffic approaching Hudson Street in order to access the site, it is observed based upon current traffic distributions adjusted for future growth that 40% of traffic would approach from northbound Prospect Street, 55% would approach from westbound Dayton Street and the remaining 5% would approach from southbound Prospect Street.

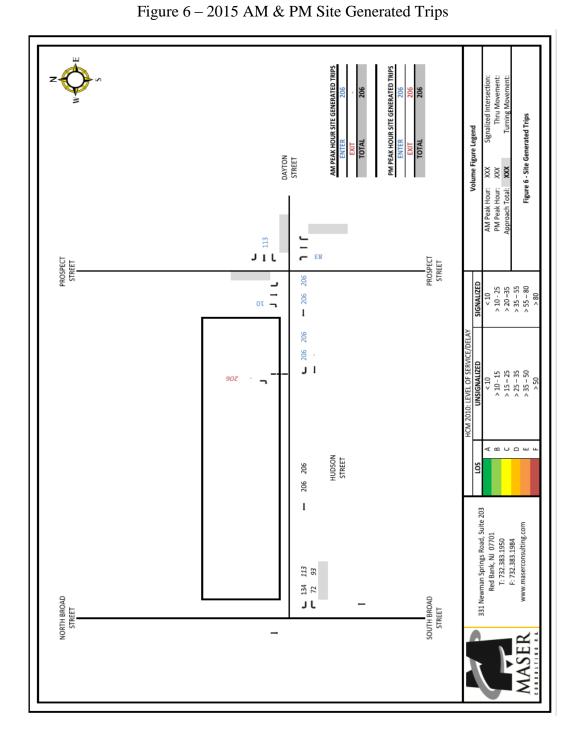

The site generated trip distribution is detailed within **Figures 5** and **6** on the following pages.

Figure 5 – Trip Distribution Percentages

Page 13 of 21

2015 FULL BUILD TRAFFIC CONDITIONS VI.

In the Full-Build scenario, the study intersections were analyzed using Synchro, a traffic analysis and simulation program. To simulate the Full-Build conditions existing traffic volumes were adjusted based upon the NJDOT Background Growth Tables and proposed housing projects near the site which would impact trip generation. These projects include the housing developments of The Dayton Apartments, The Enclave and Chestnut Village. Even if these projects are not completed by the proposed completion year of this project we believe that it would provide a more accurate analysis by including the trip generation for these sites and serve to give a better representation of future traffic conditions in the area.

SOUTH BROAD ST & HUDSON ST AND PROSPECT ST & HUDSON ST / DAYTON ST

The results of the HCM Capacity Analysis determined that the unsignalized intersections of South Broad Street & Hudson Street and Prospect Street and Hudson Street / Dayton Street will experience a drop in their LOS for the STOP controlled movements, but otherwise will maintain efficient LOS in the 2018 Full Build Condition. **Table 6** below summarizes the LOS and delay per vehicle in seconds for each approach.

Table 3 – Peak Hour Level of Service and Delay Comparison

Doodway	A	2015 E	xisting	2018 Fu	ıll Build
Roadway	Арр.	AM	PM	AM	PM
South Broad St	NB	A/0.0	A/0.0	A/0.0	A/0.0
South Broad St	SB	A/0.0	A/0.0	A/0.0	A/0.0
Llordon Ct	EB	-	-	-	-
Hudson St	WB	C/16.4	D/30.4	B/14.6	F/50.9

Roadway	Ann	2015 E	xisting	2018 Fu	ıll Build
Roadway	App.	AM	PM	AM	PM
Draspast Ct	NB	A/4.9	A/4.3	A/4.2	A/4.4
Prospect St	SB	A/0.5	A/0.7	A/0.4	A/0.7
Hudson St /	EB	-	-	-	-
Dayton St	WB	C/19.0	E/39.0	C/22.7	F/66.6

Poodway	Ann	2015 E	xisting	2018 Fu	ıll Build
Roadway	Арр.	AM	PM	AM	PM
Existing	NB	A/0.0	A/0.0	-	-
Driveways	SB	A/5.0*	A/5.0*	-	-
Proposed	NB	-	-	A/0.0	A/0.0
Driveway	SB	-	-	A/5.0*	B/12.5

^{*}Note that the Synchro analysis reports a control delay of zero seconds for this approach; we manually adjust and report this as a 5.0 second minimum delay as the approach is governed by a STOP sign.

Figure 7 – 2015 Full Build AM & PM Peak Hour Traffic Volumes

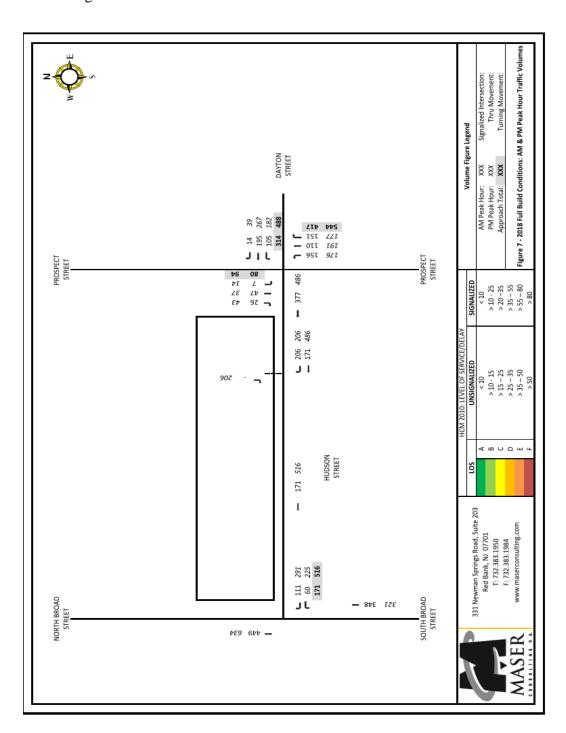
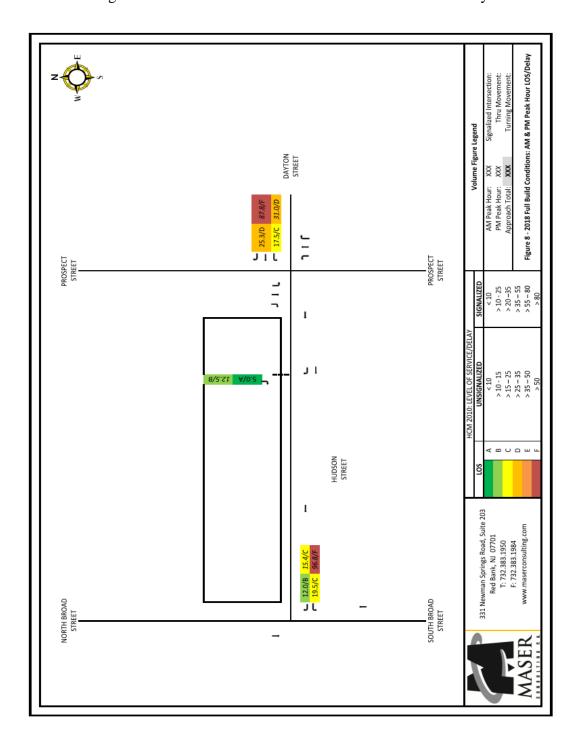



Figure 8 – 2015 Full Build AM & PM Peak Hour LOS/Delay

REVERSED TRAFFIC CIRCULATION ON HUDSON STREET

AS requested by the Village a reversed one way analysis was performed reversing the traffic circulation on Hudson Street from one way westbound to one way eastbound. This change would also eliminate the through movement from Dayton Street eastbound at its intersection with Prospect Street. Volumes from the intersection of Prospect Street which were either through or turning movements onto Hudson Street westbound were redistributed to the intersection of South Broad Street and Hudson Street utilizing the naturally occurring trip distributions observed during our turning movement counts.

With these revisions we observed the following changes to the LOS of the subject approaches:

- By switching the stop control from the intersection of South Broad Street & Hudson Street to Prospect Street & Hudson Street, delay/LOS in AM went from 14.6 (B) to 10.7 (B) and PM went from 50.9/F to 16.0/C;
- WB stop controlled approach of Dayton Street, delay/LOS in AM went from 22.7/C to 11.7/B and PM went from 66.6/F to 26.0/D;
- Operation of the access driveway at the parking deck which serves for both ingress and egress, delay/LOS in the AM maintained baseline value of 5.0/A and PM went from 12.7/B to 47.0/E.

Table 4– Peak Hour Level of Service and Delay Comparison

w/reversed one way circulation on Hudson St.

Boodway	A 10 10	2015 E	xisting	2018 Fu	II Build
Roadway	Арр.	AM	PM	AM	PM
South Broad St	NB	A/0.0	A/0.0	A/0.0	A/0.0
South Broad St	SB	A/0.0	A/0.0	A/0.0	A/0.0
Lludeen Ct	EB	-	-	-	-
Hudson St	WB	C/16.4	D/30.4	B/10.7	C/16.0

Poodway	Ann	2015 E	xisting	2018 Fu	ıll Build
Roadway	App.	AM	PM	AM	PM
Drospost Ct	NB	A/4.9	A/4.3	A/4.2	A/4.4
Prospect St	SB	A/0.5	A/0.7	A/0.4	A/0.7
Hudson St /	EB	-	-	-	-
Dayton St	WB	C/19.0	E/39.0	B/11.7	D/26.0

Roadway	Ann	2015 E	xisting	2018 Fu	ıll Build
Roauway	Арр.	AM	PM	AM	PM
Existing	NB	A/0.0	A/0.0	-	-
Driveways	SB	A/5.0*	A/5.0*	-	-
Proposed	NB	-	-	A/0.0	A/0.0
Driveway	SB	-	-	A/5.0*	E/47.0

Figure 9 – 2015 Full Build AM & PM Peak Hour Traffic Volumes (Reversed Flow)

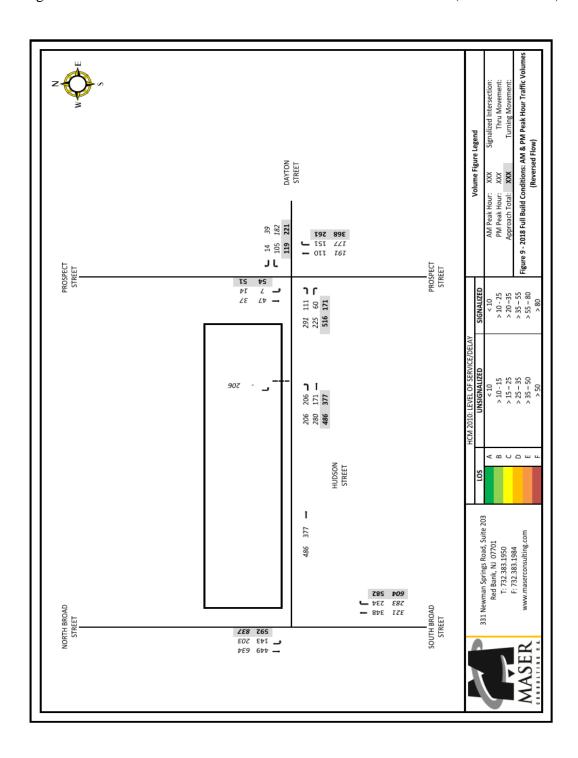
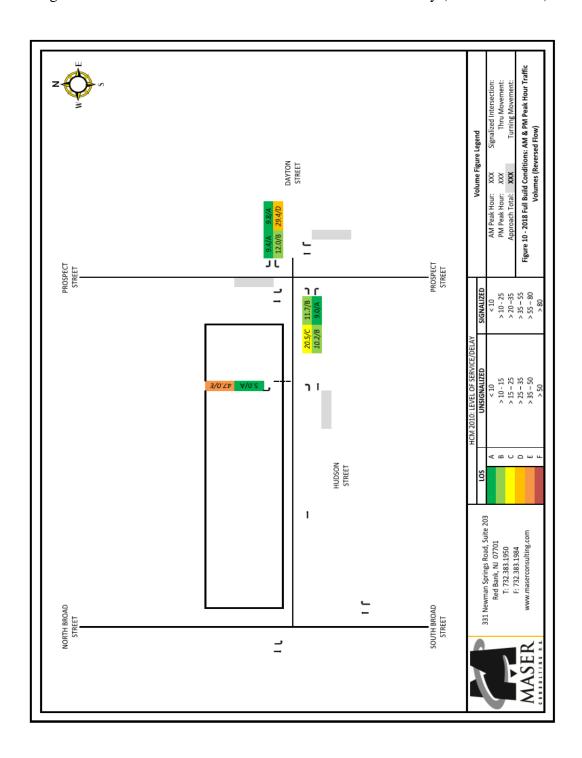



Figure 10 – 2015 Full Build AM & PM Peak Hour LOS/Delay (Reversed Flow)

VII. SITE PLAN ANALYSIS

With the adjusted traffic volumes applied to the roadway network and their impact on the existing roadways determined, the proposed site plan must be examined for compliance with local and national criteria. This section of the report will investigate the proposed site circulation, site access, parking availability, available sight distance and vehicular safety to determine compliance with the specified standard.

INTERSECTION SIGHT DISTANCE

The available sight distance required at the site access point is directly dependent to the design speed on the adjacent roadway. The speed limit on all roadways fronting the site is 25 MPH, which equates to a design speed of 30 MPH and an intersection sight distance of 290' for passenger vehicles and a stopping sight distance of 200'. The proposed access driveway would provide an intersection sight distance of approximately 220'. However, a lower sight distance maybe acceptable as the access point where vehicles will be stopped and turning from is located on a roadway which only offers one way circulation. This means that vehicles leaving the site will only be allowed to make right turns onto the roadway, thus making shorter time gaps for turning movements acceptable. It is our belief that this along with the existing street parking available on both sides of the roadway create a condition where parking movements occur with relative frequency and would serve to make drivers entering the roadway more aware of these types of turning movements. It may also be said based upon our analysis that many of the vehicles accessing Hudson Street would only do so in order to access the proposed garage, thus allowing opportunities for vehicles to exit simultaneously.

VIII. PARKING ANALYSIS

Since the proposed development is a multi-story parking facility, it is not considered a trip generator or generator of parking demand. As such, we may consider this a storage facility that will remove traffic volume from the road and increase capacity. Overall, the proposed site provides a total of 412 parking stalls which are expected to operate at 50% capacity during the AM and PM peak periods. The 84 parking stalls provided by the existing surface parking lot were accounted for within the ambient traffic in our traffic model.

To determine if the proposed site complies with the local requirements, the *Village of Ridgewood Town Code* was referenced. The site will generally conform with *Chapter 190: Land Use Development & Chapter 265: Vehicles and Traffic* as they relate to off-street parking, site access and circulation of traffic throughout the proposed site. Please note that *Chapter 265* of the town code requires that parking stalls for this application provide 20 foot deep stalls while 18 foot deep stalls are provided. As 24 foot drive aisles are also provided throughout the site we feel that this will be sufficient for safe access to parking and travel throughout the site.

ADA STANDARDS FOR ACCESSIBLE DESIGN

The requirements for handicap accessible parking availability are detailed within the *ADA Standards for Accessible Design*. As per Section 4.1.2, sites which provide a total of 412 parking stalls shall provide a total of nine (9) accessible parking stalls, with one (1) stall defined as a van accessible parking stall.

IX. SUMMARY AND CONCLUSIONS

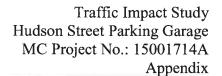
We believe based upon our analysis and firsthand knowledge of the existing parking and traffic conditions within the Village of Ridgewood that the proposed parking garage would serve as a significant improvement to the Village's public infrastructure. This project would serve to improve the available parking capacity, quality of life of both residents and visitors to the area, and would create an overall reduction of traffic circulating throughout the Village by reducing the amount of vehicles searching for parking. We believe that by also incorporating a comprehensive automated and static wayfinding program many of the unnecessary trips circulating throughout the Village's roadway network in search of parking may be further reduced.

The traffic impact analysis of the recommended roadway network adjacent to the subject site indicated operating conditions of LOS "C" & "D" for all stop controlled approaches during the AM and PM peak periods. The minimal impact on the levels of service was noted particularly for the stop controlled approaches, at both of the westbound approaches of Dayton Street and Hudson Street.

It is our opinion that the inclusion of the parking garage will not have a negative effect on the surrounding road network. Additionally, the site access point will not degrade the existing traffic flow within the surrounding roadway network. Overall, the traffic impact analysis supports the proposed site redevelopment.

At the site access point, sufficient sight distance is available to support the turning movement exiting the site driveway. The roadway is flat and linear in the project vicinity, and the reduced speed of vehicles traveling from the adjacent intersection will increase safety for vehicles exiting the site. Examining the internal site conditions, the proposed parking stall supply of 412 stalls will serve to relieve some of the existing traffic volume already present on the road network. The parking aisles, driveways and drive aisles within the site will provide sufficient space for all anticipated vehicular traffic to maneuver safely and efficiently.

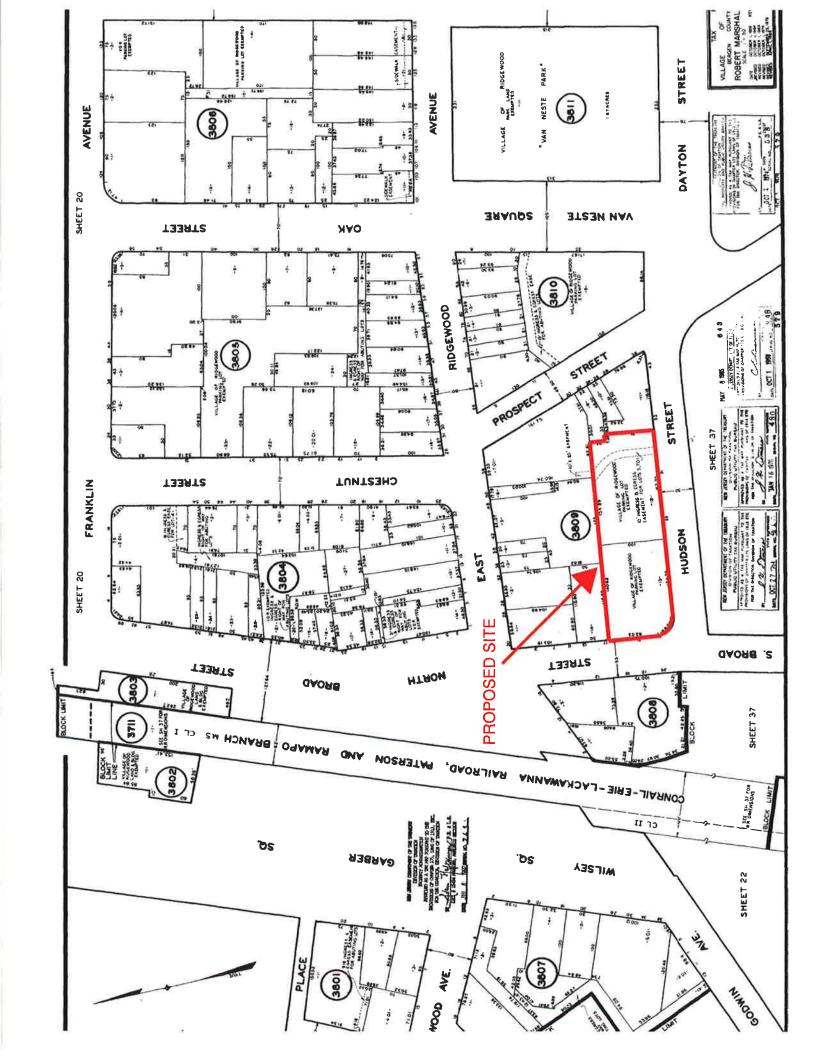
Overall, the development of the Hudson Street Parking Garage within the subject site does not negatively impact existing traffic conditions and will provide some relief to existing traffic volume and parking demand from the surrounding land uses. We recommend the Village consider the following to help mitigate the existing and proposed traffic conditions in the immediate area of our study:


- We recommend that an analysis be performed to incorporate the intersections of South Broad Street & East Ridgewood Avenue and North Broad Street & Franklin Avenue into our traffic model as these intersections are already operating at capacity and may affect access to the surrounding land uses;
- Our preliminary analysis reversing the traffic circulation on Hudson Street exhibited a positive impact on its intersections with South Broad Street and Prospect Street. We recommend that a study be performed to include Passaic Street as Hudson Street and Passaic Street operate as a pair within the roadway network. It is also our opinion that the study should include the intersections of South Broad Street & East Ridgewood Avenue and North Broad Street & Franklin Avenue as these intersections are operating near capacity and have a noticeable effect upon traffic. A revised traffic circulation pattern may provide more efficient access not only to the proposed site but also the surrounding land uses;
- Consideration should be given to eliminating a portion of on street parking present along South Broad Street and Prospect Street near their intersection with Hudson Street. Doing so may provide better traffic circulation and alleviate congestion at intersections to the north by eliminating parking movements which bottleneck through traffic during peak periods;
- If traffic circulation is reversed, a dedicated left turn lane should be incorporated into the traffic pattern for South Broad Street SB at its intersection with Hudson Street. This would allow for storage of vehicles seeking to make a left turn onto Hudson Street EB and allow through movements to pass through the intersection unhindered;
- Along with parking elimination, we believe that the Village should consider widening the sidewalks near these two intersections in order to provide better circulation of pedestrian traffic to and from parking facilities to points of interest in the village center;
- It is our understanding that the Village will be eliminating parking along Hudson Street once the parking garage is constructed and we agree that this action would provide a positive effect on traffic circulation through the roadway and on traffic seeking access to and from the parking garage;
- Roadways near the proposed site should be restriped in order to ensure proper use by motorists, increase pedestrian safety at intersections and provide a traffic calming effect;
- Consideration should be given to studying and implementing either a roundabout or traffic signal at the intersection of East Ridgewood Avenue & South Broad Street and at the intersection of Prospect Street & Hudson Street / Dayton Street. Doing so may help to alleviate congestion caused by queues at stop controlled intersections during peak periods.

Traffic Impact Study Hudson Street Parking Garage MC Project No.: 15001714A Page 23 of 21

• We believe that implementation of an automated and static parking wayfinding system would serve to not only improve the operation of the proposed development but also that of the existing surface parking lots throughout the Village of Ridgewood. By providing proper signage traffic volume attributed to users searching for parking spaces may be alleviated and directed away from intersections which already operate at or near capacity, improving network flow.

 $R:\AllOffices\Bethlehem\Projects\2015\15001714A\Traffic\Reports\151015_ij_TIS_R3.docx$



HUDSON STREET PARKING GARAGE TRAFFIC IMPACT STUDY

APPENDIX A

VILLAGE OF RIDGEWOOD TAX MAP

Traffic Impact Study Hudson Street Parking Garage MC Project No.: 15001714A

Appendix

HUDSON STREET PARKING GARAGE TRAFFIC IMPACT STUDY

APPENDIX B

MANUAL TURNING MOVEMENT COUNTS

331 Newman Springs Road, #203 Red Bank, NJ 07701

Customer Loyalty through Client Satisfaction

File Name: 1-HUDSON_ST_AT_PROSPECT_ST_262468_10-06-2015

Start Date: 10/6/2015

Page No

Site Code

M.C. No.: 15001714A

Intersection of Prospect St. & Hudson St./ Dayton St.

Village of Ridgewood, NJ

PM Peak Hour Data

8 d a a a App. Total 8 2 8 2 4 - m 4 4 5 **Hudson Street** From Wes Left 00000 00000 Total 79 60 48 60 60 24 76 76 270 Peds App. **-04** 0 2 2 2 <u>2</u> Groups Printed- Lights - Buses - Trucks - Pedestrians Dayton Street From South 25 21 24 27 87 다 15 15 15 15 15 82238 Right 38 17 9 18 80 80 Total 57 63 43 56 219 **23228** From East 8 15 33 25 E 84 5 2 2 2 32 33 33 41 @ ω α α <u>@</u> 4 1 2 2 2 Total 13 13 20 59 61 8 19 App. Peds 0100t 5575 Prospect Street From North Left 00004 22275 70007 04r8 Start Time 04:00 PM 04:15 PM 04:30 PM 04:45 PM Total 05:00 PM 05:15 PM 05:30 PM 05:45 PM Total

151 139 108 140 538

0 m 4 4 E

벋

143 152 162 151 608

331 Newman Springs Road, #203 Red Bank, NJ 07701 Customer Loyalty through Client Satisfaction

File Name: 1-HUDSON_ST_AT_PROSPECT_ST_262468_10-06-2015 Site Code: Start Date: 10/6/2015 Page No: 2

Street East From South From South It Peds App. Total Right Thru Left Peds App. Total A72 164 175 159 19 517 164 175 159 19 517 168 1.6 41.2 14.3 15.3 13.9 1.7 45.1 159 0 494 10 0 0 0 10 0 0 0 0								G	Groups Pr	inted-Lic	Printed- Lights - Buses	ss - Truck	s - Pede	strians								
Left Peds App. Total Right Thru Left Peds App. Total 13 49 120 36 248 170 18 472 164 175 159 19 517 10.8 40.8 1.6 52.5 36 3.8 3.7 33.8 30.8 3.7 45.1 13 0 70 34 236 168 0 92.8 164 171 159 0 494 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			P. Ö.F.	spect Strom Nort	reet h			۵۳		t set			£	ospect Str From Sou	reet th			Ĭ	Hudson Street From West	eet st		
13 49 120 36 248 170 18 472 164 175 159 19 517 10.8 40.8 7.6 52.5 36 3.8 31.7 33.8 30.8 3.7 1.1 4.3 10.5 3.1 21.6 14.8 1.6 41.2 14.3 15.3 13.9 1.7 45.1 13 0 70 34 236 168 0 438 164 171 159 0 494 100 0 58.3 94.4 95.2 98.8 0 92.8 100 97.7 100 0 95.6 0 0 0 1 8 1 0 1 0 0 95.6 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right		맫	Left	Peds	App. Total		Thr	Left	Peds	App. Total	Right		Left		App. Total	Right	ם	Left	Peds	App. Total	-
10.8 40.8 7.6 52.5 36 3.8 31.7 33.8 30.8 3.7 45.1 1.1 4.3 10.5 3.1 21.6 14.8 1.6 41.2 14.3 15.3 13.9 1.7 45.1 13 0 70 34 236 168 0 438 164 171 159 0 494 100 0 58.3 94.4 95.2 98.8 0 92.8 100 97.7 100 0 95.6 0 0 0 0 2.8 1 0	33		27	13	49	120		248	170	9	472	164	175	159	19	517	-	0	0	36	37	1146
1.1 4.3 10.5 3.1 21.6 14.8 1.6 41.2 14.3 15.3 13.9 1.7 13 0 70 34 236 168 0 438 164 171 159 0 100 0 58.3 94.4 95.2 98.8 0 92.8 100 97.7 100 0 0 0 0 1 8 1 0 1 0	25.8		22.5	10.8	40.8		7.6	52.5	36	3.8		31.7	33.8	30.8	3.7		2.7	0	0	97.3		
13 0 70 34 236 168 0 438 164 171 159 0 100 0 58.3 94.4 95.2 98.8 0 92.8 100 97.7 100 0 0 0 0 1 8 1 0 1 0	2.7		2.4	1.1	4.3	10.5		21.6	14.8	1.6	41.2		15.3	13.9	1.7	45.1	0.1	0	0	3.1	3.2	
100 100 0 58.3 94.4 95.2 98.8 0 92.8 100 97.7 100 0 0 0 0 0 0 1 8 1 0 1 0 0 0 0 0 0 2.8 3.2 0.6 0 2.1 0 0.6 0 0 0 0 0 0 0 1 4 1 0 6 0	30		27	5	0	20		236	168	0	438		171	129	0	494	•	0	0	0	11	l
0 0 0 0 0 2.8 3.2 0.6 0 2.1 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	96.8		100	100	0	58.3		95.2	98.8	0	92.8		7.76	100	0	92.6	100	0	0	0	2.7	
0 0 0 0 0 0 2.8 3.2 0.6 0 2.1 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0		œ	•	0	10		•	0	0	-	0	0	0	0	0	
0 0 0 0 1 1 1 4 1 0 6 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0		3.2	9.0	0	2.1		9.0	0	0	0.2	0	0	0	0	0	
0 0 0 0 0.8 2.8 1.6 0.6 0 1.3 0 1.7 0 0 0 0 0 0 49 49 0 0 0 18 18 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_		0	0	0	-		4		0	9	0	က	0	0	ო	0	0	0	O	0	10
0 0 49 49 0 0 0 18 18 0 0 0 19	3.2		0	0	0	0.8		1.6	9.0	0	1.3	0	1.7	0	0	9.0	0	0	0	0	0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	49	49		0	0	2	18	0	0	0	19	19	0	0	0	36	36	
	O	_	0	0	100	40.8		0	0	100	3.8	0	0	0	100	3.7	0	0	0	100	97.3	

331 Newman Springs Road, #203 Red Bank, NJ 07701 Customer Loyalty through Client Satisfaction

File Name: 1-HUDSON_ST_AT_PROSPECT_ST_262468_10-06-2015 Site Code: Start Date: 10/6/2015 Page No: 3

Page No

Dayton Stre In 438 10 6 18 472 Out 177 0 0 0 177 Total 615 10 6 18 649 34 1 1 0 36 Right 0 0 0 18 18 Peds 168 1 1 0 170 Left 236 8 4 0 248 Thru 10/6/2015 04:00 PM 10/6/2015 05:45 PM E 0 0 - 8 5 Lights Buses Trucks Pedestrians 198 Out 205 24 0 11 21 0 4 0 11) 0 0 0 0 0 0 36 36 96 96 Ивы 100 8 8 8 8 8 8 8 8 8 8 1610T 8 8 5 36 375 38 0 0 1

Hudson Street

Masex Cansulting 331 Newman Springs Road, #203 Red Bank, NJ 07701

Customer Loyalty through Client Satisfaction

File Name: 1-HUDSON_ST_AT_PROSPECT_ST_262468_10-06-2015 Site Code:

: 10/6/2015 Start Date : Page No :

4

Maser Cansulting 331 Newman Springs Road, #203 Red Bank, NJ 07701

Customer Loyalty through Client Satisfaction

File Name: 1-HUDSON_ST_AT_PROSPECT_ST_262468_10-06-2015 Site Code: Start Date: 10/6/2015 Page No: 5

Dayton Street Prospect Street Prospect Street Hudson Street

331 Newman Springs Road, #203 Red Bank, NJ 07701

Customer Loyalty through Client Satisfaction

M.C. No.: 15001714A

Intersection of Prospect St. & Hudson St./ Dayton St. Village of Ridgewood, NJ

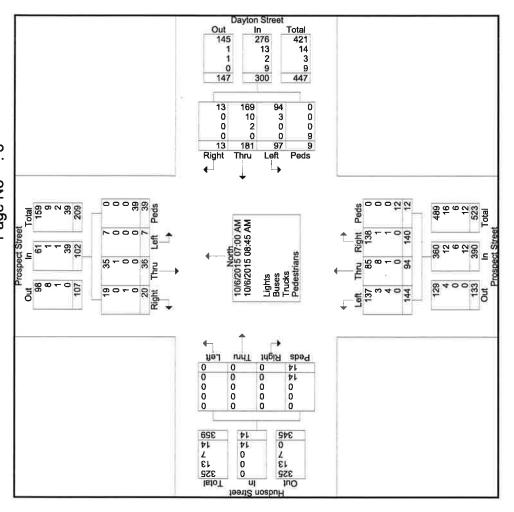
AM Peak Hour Data

File Name: 1-HUDSON_ST_AT_PROSPECT_ST_262468_10-06-2015 Site Code: Start Date: 10/6/2015 Page No: 1

setrians	Prospect Street From South From West	Left Peds App. Total Right Thi	5 0 26	18 0 48 0 0	18 1	26 4	67 5	26 1 47 0 0 0	15 1	18 0	18 5	1
Printed- Lights - Buses - Frucks - Pedestrians	£	Right Thru	2	18	27	13	89		18	15	27	01
Groups Printed- Lights - Bu	Dayton Street From East	Left Peds	4 2	7 3	14	27 17 2 4	42 8		17 0	11 13 1 2	11 0	
		tal Right Thru	10 2 1	11 0 1	4	5 2 2	8 9	12 2 2	1 2 2	9 0 1	-	
	Prospect Street From North	Left Peds App. Total	1 2	e 0	9	1 0	3 11 4	0 5 1	0 6		4 13 2	
	Prosp. Fron	Right Thru	5 2	3	5 6	0 4	13 17	1 6	4	3	2 7	1
			07:00 AM	07:15 AM	07:30 AM	07:45 AM	Total	08:00 AM	08:15 AM	08:30 AM	08:45 AM	Takel

331 Newman Springs Road, #203 Red Bank, NJ 07701 Customer Loyalty through Client Satisfaction

File Name: 1-HUDSON_ST_AT_PROSPECT_ST_262468_10-06-2015 Site Code: Start Date: 10/6/2015 Page No: 2

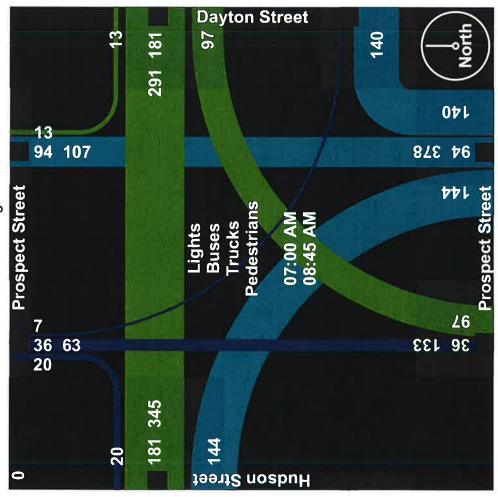

						5	2	i		cioabo i mica rigino pasco i acon i caccanano	-									
Prospect Street	Spect Street	reet h				D E II	Dayton Street From Fast	*			5 <u>r</u>	Prospect Street From South	eet h			Ĭ	Hudson Street From West	e t		
Left Peds App. Total	Left Peds App. Total	ds App. Total		Right		Thr	Left	Peds /	App. Total	Right	된	Left	Spac	App. Total	Right	Thro	Left	spa	App. Total	Int. Tota
36 7 39 102 13	7 39 102	102	L	13		181	26	Į.	300	140	8	1	12	390	0	0	0	14	14	806
6.9 38.2	6.9 38.2			4.3		60.3	32.3	က			24.1	36.9	3.1		0	0	0	100		
0.9 4.8 12.7 1.6	0.9 4.8 12.7 1.6	12.7 1.6	1.6			22.5	12	Þ	37.2		11.7	17.9	1.5	48.4	0	0	0	1.7	1.7	
7 0 61 13	7 0 61 13	61 13	13			169	8	0	276		82	137	0	360	0	0	0	0	0	697
100 0 59.8 100	100 0 59.8 100	59.8 100	100		Ö	3.4	6.96	0	92		90.4	95.1	0	92.3	0	0	0	0	0	86.5
0 0 1 0	0 0 1 0	-0	0			9	က	0	13		∞	ო	0	12	0	0	0	0	0	26
0 0 1 0	0 0 1 0	-	0			5.5	3.1	0	4.3		8.5	2.1	0	3.1	0	0	0	0	0	3.2
0 0 1 0	0 0 1 0	1 0	0			7	0	0	2		-	4	0	9	0	0	0	0	0	o
0 0	0 0	1 0	0			1.1	0	0	0.7		7	2.8	0	1.5	0	0	0	0	0	1.1
0 39 39 0	0 39 39 0	39 0	0			0	0	ნ	თ		0	0	12	12	0	0	0	14	14	74
0 100 38.2 0	0 100 38.2 0	38.2 0	0			0	0	100	က		0	0	100	3.1	0	0	0	100	9	9.2

331 Newman Springs Road, #203 Red Bank, NJ 07701

Customer Loyalty through Client Satisfaction

File Name: 1-HUDSON_ST_AT_PROSPECT_ST_262468_10-06-2015 Site Code:

Start Date : 10/6/2015 Page No : 3


331 Newman Springs Road, #203 Red Bank, NJ 07701

Customer Loyalty through Client Satisfaction

File Name: 1-HUDSON_ST_AT_PROSPECT_ST_262468_10-06-2015 Site Code:

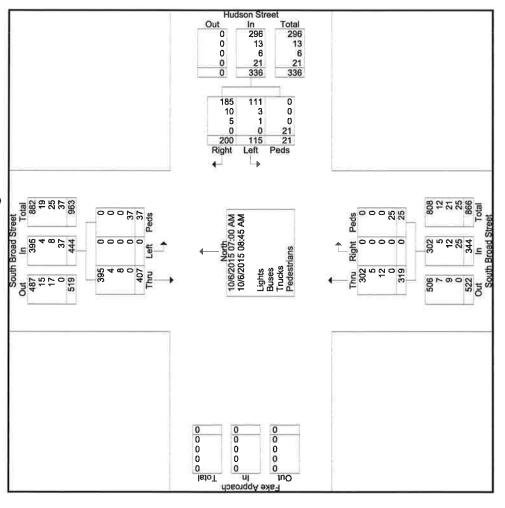
Start Date : 10/6/2015

Page No : 4

Masex Consulting
331 Newman Springs Road, #203
Red Bank, NJ 07701
Customer Loyalty through Client Satisfaction

331 Newman Springs Road, #203 Red Bank, NJ 07701 Customer Loyally through Client Satisfaction

M.C. No.: 15001714A

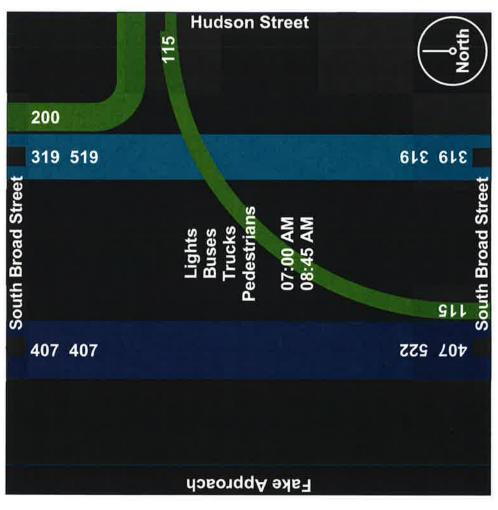

Intersection of S. Broad St. & Hudson St. Village of Ridgewood, NJ AM Peak Hour Data

		ᆵ					507					
		App. Total		40	48	42	154	39	20	43	28	400
	ad Street South	Peds	ო	-	S	2	14	4	2	7	0	7.7
	South Broad Street From South	Thr	21	33	43	37	140	35	45	41	28	470
			0		0	0	0	0	0	0	0	c
lestrians		App. Total	19	32	49	52	152	45	33	37	63	101
Trucks - Pec	Street East	Peds	0	၉	4	4	Ξ	-	7	-	9	5
nts - Buses -	Hudson From E	Left	ო	œ	15	21	47	13	16	12	27	SS
s Printed- Lig	Hudson Street From East	Right	16	21	30	27	22	31	21	24	30	406
Group		App. Total	31	33	29	82	201	55	29	99	63	243
	ad Street Jorth	Peds	2	5	9	10	23	-	0	2	∞	14
	South Broad Street From North	Left	0	0	0	0	0	0	0	0	0	c
		Thru	29	28	53	89	178	54	29	61	22	220
		Start Time	07:00 AM	07:15 AM	07:30 AM	07:45 AM	Total	08:00 AM	08:15 AM	08:30 AM	08:45 AM	- Loto

331 Newman Springs Road, #203 Red Bank, NJ 07701 Customer Loyalty through Client Satisfaction

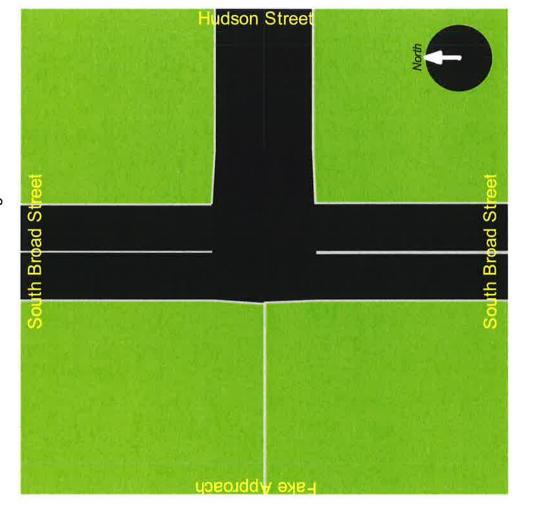
	5111	Groups	s Printed-Lig	hts - Buses -	Trucks - Pec	lestrians					
South Broad Street From North			Hudson Street From East	Hudson From E	Street			South Broad Street From South	ad Street outh		
Left Peds App. Total	App. To		Right	Left	Peds	App. Total	Right	맫	Peds	App. Total	Int. Tota
	4		200	115	21	336	0	319	25	344	1124
0 8.3			59.5	34.2	6.2		0	92.7	7.3		
	39		17.8	10.2	1.9	29.9	0	28.4	2.2	30.6	
0 0 36	36		185	111	0	296	0	302	0	302	66
0 0 88	œ		92.5	96.5	0	88.1	0	94.7	0	87.8	88.
0 0		100	9	က	0	13	0	ည	0	2	2
0 0	0	6.0	S	2.6	0	3.9	0	1.6	0	1.5	
0 0			2	-	0	9	0	12	0	12	26
0 0 1.8	Ψ.	~	2.5	6.0	0	4.8	0	3.8	0	3.5	2.
	9	_	0	0	51	23	0	0	25	25	83
0 100 8.3	α	~	C	0	100	62	C	O	100	7.3	7.7

331 Newman Springs Road, #203 Red Bank, NJ 07701 Customer Loyalty through Client Satisfaction


331 Newman Springs Road, #203 Red Bank, NJ 07701

Customer Loyalty through Client Satisfaction

File Name: 2-HUDSON_ST_AT_S_BROAD_ST_262469_10-06-2015 Site Code:


Start Date : 10/6/2015

Page No

Maser Cansulting 331 Newman Springs Road, #203 Red Bank, NJ 07701

Customer Loyalty through Client Satisfaction

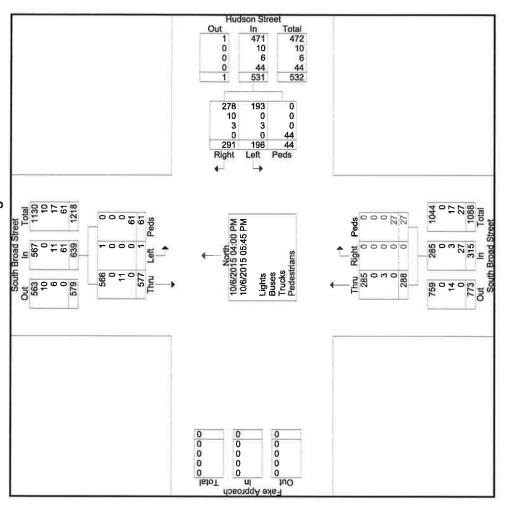
331 Newman Springs Road, #203 RedBank, NJ 07701 Custamer Loyally through Client Satisfaction

Intersection of S. Broad St. & Hudson St. M.C. No.: 15001714A

Village of Ridgewood, NJ PM Peak Hour Data

				Group	S Printed-Ligh	nts - Buses -	Trucks - Ped	lestrians					
		South Broad Street From North	ad Street Vorth		Hudson Street From East	Hudson From E	Street			South Broad Street From South	ad Street		
Start Time		Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thr	Peds	App. Total	Int. Total
04:00 PM		0	11		38	23	က	49	0	28	2	30	177
04:15 PM		0	7	_	¥	18	9	28	0	35	6	44	171
04:30 PM		-	∞		37	14	2	99	0	43	10	53	185
04:45 PM		0	5		40	56	တ	75	0	33	_	34	185
Total	272	-	31	L.,	149	8	23	253	0	139	22	161	718
05:00 PM		0	ဖ	06	33	28	9	29	0	45	-	46	203
05:15 PM		0	9		35	29	7	71	0	34	-	35	179
05:30 PM	73	0	12		35	32	œ	75	0	38	2	40	200
05:45 PM		0	9		36	26	0	65	0	32	-	33	185
Total		0	30		142	115	21	278	0	149	5	154	191

Maser Cansulting
331 Newman Springs Road, #203
Red Bank, NJ 07701
Customer Loyalty through Client Satisfaction


				Groups	ss Printed-Lig	ihts - Buses -	Trucks - Ped	lestrians					
		South Broad Street From North	ad Street North		Hudson Street From East	Hudson From E	Street			South Broad Street From South	d Street outh		
	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thr	Peds	App. Total	Int. Total
Grand Total	577		61		291	196	44	531	0	288	27	315	1485
Apprch %	90.3	0.2	9.5		54.8 8.43	36.9	8.3		0	91.4	8.6		
Total %	38.9	0.1	4.1		19.6	13.2	က	35.8	0	19.4	1.8	21.2	
Lights	266	-	0	299	278	193	0	471	0	285	0	285	1323
% Lights	98.1	100	0		95.5	98.5	0	88.7	0	66	0	90.5	89.1
Buses	0	0	0		10	0	0	10	0	0	0	0	9
% Buses	0	0	0	0	3.4	0	0	1.9	0	0	0	0	0.7
Trucks	-	0	0	-	ო	ო	0	9	0	ო	0	ო	20
% Trucks	1.9	0	0	1.7	-	1.5	0	1.1	0		0		1.3
Pedestrians	0	0	61	61	0	0	4	44	0	0	27	27	132
% Pedestrians	0	0	100	9.5	0	0	100	8.3	0	0	100	8.6	8.9

331 Newman Springs Road, #203 Red Bank, NJ 07701

Customer Loyalty through Client Satisfaction

File Name: 2-HUDSON_ST_AT_S_BROAD_ST_262469_10-06-2015 Site Code:

Start Date : 10/6/2015 Page No : 3

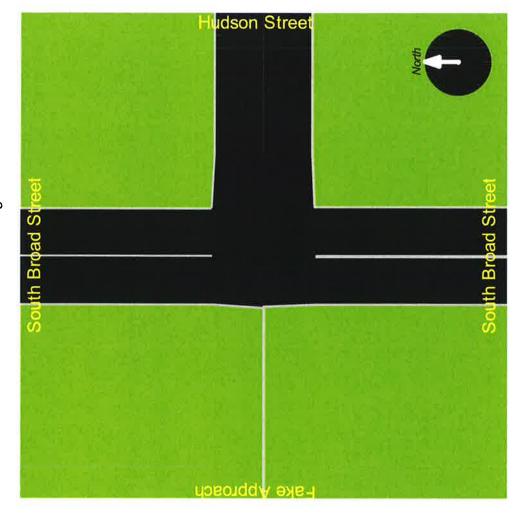
331 Newman Springs Road, #203 Red Bank, NJ 07701

Customer Loyalty through Client Satisfaction

File Name: 2-HUDSON_ST_AT_S_BROAD_ST_262469_10-06-2015 Site Code

Start Date : 10/6/2015

4



Eake Approach

Maser Cansulting 331 Newman Springs Road, #203 Red Bank, NJ 07701

Customer Loyalty through Client Satisfaction

Traffic Impact Study Hudson Street Parking Garage MC Project No.: 15001714A Appendix

HUDSON STREET PARKING GARAGE TRAFFIC IMPACT STUDY

APPENDIX C

SYNCHRO HCM CAPACITY ANALYSIS SUMMARY SHEETS Intersection Capacity Utilization 39.4%

Analysis Period (min) 15

	→ ↓	,
Lane Group WBL WBR NBT NBR S	BL SB	ВТ
Lane Configurations 7 7		†
Volume (vph) 115 206 319 0	0 40	107
Ideal Flow (vphpl) 1900 1900 1900 19	00 190	900
Lane Util. Factor 1.00 1.00 1.00 1.00 1.	.00 1.0	.00
Ped Bike Factor		
Frt 0.850		
Fit Protected 0.950		
Satd. Flow (prot) 1593 1425 1676 0	0 167	676
Flt Permitted 0.950		
Satd. Flow (perm) 1593 1425 1676 0	0 167	676
Link Speed (mph) 25 25	3	30
Link Distance (ft) 77 252	30	301
Travel Time (s) 2.1 6.9	6.	6.8
Confl. Peds. (#/hr) 25 37		
Peak Hour Factor 0.92 0.92 0.92 0.92 0.	.92 0.9	.92
Parking (#/hr) 0 0 0		0
Adj. Flow (vph) 125 224 347 0	0 44	142
Shared Lane Traffic (%)		
Lane Group Flow (vph) 125 224 347 0	0 44	142
Sign Control Stop Free	Fre	ree
Intersection Summary	100	gatil's
Area Type: Other		
Control Type: Unsignalized		

ICU Level of Service A

AM Peak Model Hudson Street Parking Deck 10/9/2015 Baseline JDR

	•	•	†	-	-	ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	N.	7	↑			^
Volume (veh/h)	115	206	319	0	0	407
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	125	224	347	0.52	0.52	442
Pedestrians	120	224		U	U	37
			25			
Lane Width (ft)			12.0			12.0
Walking Speed (ft/s)			4.0			4.0
Percent Blockage			2			3
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	814	384			347	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	814	384			347	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	V. 1	VIL				
tF (s)	3.5	3.3			2.2	
p0 queue free %	63	65			100	
	340	643			1212	
cM capacity (veh/h)	340	043			1212	
Direction, Lane #	WB 1	WB 2	NB 1	SB 1		
Volume Total	125	224	347	442		
Volume Left	125	0	0	0		
Volume Right	0	224	0	0		
cSH	340	643	1700	1700		
Volume to Capacity	0.37	0.35	0.20	0.26		
Queue Length 95th (ft)	41	39	0	0		
Control Delay (s)	21.6	13.6	0.0	0.0		
Lane LOS	C	В	0.0	3.0		
Approach Delay (s)	16.4	×	0.0	0.0		
Approach LOS	C		0.0	0.0		
	U					
Intersection Summary	ALV.	Cu di				
Average Delay			5.0			
Intersection Capacity Utiliza	ition		39.4%	IC	U Level	of Service
Analysis Period (min)			15			

	•	•	†	1	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations			\$			4
Volume (vph)	0	0	238	140	7	133
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt			0.950			
Flt Protected						0.997
Satd. Flow (prot)	0	0	1770	0	0	1857
Flt Permitted						0.997
Satd. Flow (perm)	0	0	1770	0	0	1857
Link Speed (mph)	30		25			30
Link Distance (ft)	119		188			74
Travel Time (s)	2.7		5.1			1.7
Confl. Peds. (#/hr)				9	12	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	259	152	8	145
Shared Lane Traffic (%)						
Lane Group Flow (vph)	. 0	0	411	0	0	153
Sign Control	Stop		Free			Free
Intersection Summany	ECOLUMN STATE		E	1000	S. 47 E.	

Intersection Summary

Area Type:

Other

Control Type: Unsignalized

Intersection Capacity Utilization 24.7%

Analysis Period (min) 15

	•	1	†	~	1	ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations			1>			सी
Volume (veh/h)	0	0	238	140	7	133
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	259	152	8	145
Pedestrians	12					. 10
Lane Width (ft)	0.0					
Walking Speed (ft/s)	4.0					
Percent Blockage	0					
Right turn flare (veh)	J					
Median type			None			None
Median storage veh)			NOHE			HOHE
Upstream signal (ft)						
pX, platoon unblocked						
	507	347			423	
vC, conflicting volume	507	347			423	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	507	0.47			400	
vCu, unblocked vol	507	347			423	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0 -	0.6				
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			99	
cM capacity (veh/h)	522	696			1136	
Direction, Lane #	NB 1	SB 1				
Volume Total	411	152				
Volume Left	0	8				
Volume Right	152	0				
cSH	1700	1136				
Volume to Capacity	0.24	0.01				
Queue Length 95th (ft)	0	1				
Control Delay (s)	0.0	0.5				
Lane LOS		Α				
Approach Delay (s)	0.0	0.5				
Approach LOS	0.0	0.0				
Intersection Summary						
Average Delay			0.1			
Intersection Capacity Utiliz	zation		24.7%	IC	U Level	of Service
Analysis Period (min)			15			
			12			

	۶	-	•	1	•	*	4	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	7			લી			1>	
Volume (vph)	0	0	0	97	181	13	144	94	0	0	36	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.990						0.951	
Flt Protected				0.950				0.971				
Satd. Flow (prot)	0	0	0	1770	1844	0	0	1809	0	0	1594	0
Flt Permitted				0.950				0.971				
Satd. Flow (perm)	0	0	0	1770	1844	0	0	1809	0	0	1594	0
Link Speed (mph)		25			25			30			25	
Link Distance (ft)		201			153			74			347	
Travel Time (s)		5.5			4.2			1.7			9.5	
Confl. Peds. (#/hr)				12		39	14		9			14
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)											0	
Adj. Flow (vph)	0	0	0	105	197	14	157	102	0	0	39	22
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	105	211	0	0	259	0	0	61	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary	S. 197 C	COLUMN TO SERVICE	W	1414	70						. 12.	

Area Type:

Other

Control Type: Unsignalized

Intersection Capacity Utilization 38.8%

ICU Level of Service A

Existing Conditions	,							1				
	→	-	•	•	•	•		†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ň	1>			4			1>	
Volume (veh/h)	0	0	0	97	181	13	144	94	0	0	36	20
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	105	197	14	157	102	0	0	39	22
Pedestrians		14			9			12			39	
Lane Width (ft)		0.0			12.0			12.0			12.0	
Walking Speed (ft/s)		4.0			4.0			4.0			4.0	
Percent Blockage		0			1			1			3	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	631	488	76	486	499	150	75			111		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	631	488	76	486	499	150	75			111		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	76	53	98	90			100		
cM capacity (veh/h)	219	427	975	442	421	861	1524			1468		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	4.77		EG.	".		MIN		
Volume Total	105	211	259	61								
Volume Left	105	0	157	0								
Volume Right	0	14	0	22								
cSH	442	436	1524	1700								
Volume to Capacity	0.24	0.48	0.10	0.04								
Queue Length 95th (ft)	23	64	9	0								
Control Delay (s)	15.7	20.7	4.9	0.0								
Lane LOS	С	С	Α									
Approach Delay (s)	19.0		4.9	0.0								
Approach LOS	С											
Intersection Summary			n strani		- Alle			100		print (
Average Delay			11.5									
Intersection Capacity Utiliza	ation		38.8%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									
1000												

Analysis Period (min) 15

	•	*	†	1	\	Į.	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT) i i
Lane Configurations	1	7	^			†	
Volume (vph)	196	291	288	0	0	577	
ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt		0.850					
Flt Protected	0.950						
Satd. Flow (prot)	1593	1425	1676	0	0	1676	
FIt Permitted	0.950						
Satd. Flow (perm)	1593	1425	1676	0	0	1676	
Link Speed (mph)	25		25			30	
Link Distance (ft)	77		252			301	
Travel Time (s)	2.1		6.9			6.8	
Confl. Peds. (#/hr)	27	61					
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Parking (#/hr)	0	0	0			0	
Adj. Flow (vph)	213	316	313	0	0	627	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	213	316	313	0	0	627	
Sign Control	Stop		Free			Free	
Intersection Summary	3 177		2015			. 10	5.0
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utiliza	ation 50.0%			IC	U Level	of Service	Α

PM Peak Model Hudson Street Parking Deck 10/9/2015 Baseline JDR

	•	*	†	~	-	\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y	7	^				
Volume (veh/h)	196	291	288	0	0	577	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	213	316	313	0	0	627	
Pedestrians			27	_		61	
Lane Width (ft)			12.0			12.0	
Walking Speed (ft/s)			4.0			4.0	
Percent Blockage			2			5	
Right turn flare (veh)			_				
Median type			None			None	
Median storage veh)			110110				
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	967	374			313		
vC1, stage 1 conf vol	001	0,4			010		
vC2, stage 2 conf vol							
vCu, unblocked vol	967	374			313		
C, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	0.4	0.2			7.1		
tF (s)	3.5	3.3			2.2		
p0 queue free %	23	50			100		
cM capacity (veh/h)	276	638			1247		
					1271		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	100		
/olume Total	213	316	313	627			
Volume Left	213	0	0	0			
Volume Right	0	316	0	0			
cSH	276	638	1700	1700			
Volume to Capacity	0.77	0.50	0.18	0.37			
Queue Length 95th (ft)	146	69	0	0			
Control Delay (s)	51.6	16.1	0.0	0.0			
Lane LOS	F	С					
Approach Delay (s)	30.4		0.0	0.0			
Approach LOS	D						
Intersection Summary	1 1 2	1,000	100	THE DESIGNATION OF THE PERSON		1	AND THE RESERVE
Average Delay			10.9				
ntersection Capacity Utiliza	ition		50.0%	IC	U Level of	Service	Α
Analysis Period (min)			15				

	1	•	†	-	-	↓	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	4. 8
Lane Configurations			ĵ»			सी	
Volume (vph)	0	0	334	164	13	197	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt			0.956				
Flt Protected						0.997	
Satd. Flow (prot)	0	0	1781	0	0	1857	
Flt Permitted						0.997	
Satd. Flow (perm)	0	0	1781	0	0	1857	
Link Speed (mph)	30		25			30	
Link Distance (ft)	119		188			74	
Travel Time (s)	2.7		5.1			1.7	
Confl. Peds. (#/hr)				18	18		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	363	178	14	214	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	541	0	0	228	
Sign Control	Stop		Free			Free	

Intersection Summary

Area Type:

Control Type: Unsignalized

Intersection Capacity Utilization 31.5%

Other

Analysis Period (min) 15

	•	*	†	1	-	ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations			7>			स
Volume (veh/h)	0	0	334	164	13	197
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0.32	0.32	363	178	14	214
Pedestrians	18	U	303	170	14	Z 14
Lane Width (ft)	0.0					
Walking Speed (ft/s)	4.0					
	4.0					
Percent Blockage	U					
Right turn flare (veh)			Ness			Nove
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked		<i>(</i>				
vC, conflicting volume	713	470			559	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	713	470			559	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			99	
cM capacity (veh/h)	393	593			1012	
Direction, Lane #	NB 1	SB 1			N PH WI	
Volume Total	541	228				
Volume Left	0	14				
Volume Right	178	0				
cSH	1700	1012				
Volume to Capacity	0.32	0.01				
Queue Length 95th (ft)	0	1				
Control Delay (s)	0.0	0.7				
Lane LOS	0.0	A				
Approach Delay (s)	0.0	0.7				
Approach LOS	0.0	0.11				
Intersection Summary		< J 19	14.15	26	TAT	
Average Delay			0.2			
Intersection Capacity Utilization	ation		31.5%	IC	U Level o	of Service
Analysis Period (min)			15			

	۶	→	•	•	←	*	1	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				Y	13			4			₽	
Volume (vph)	0	0	0	170	248	36	164	170	0	0	27	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.981						0.927	
Flt Protected				0.950				0.976				
Satd. Flow (prot)	0	0	0	1770	1827	0	0	1818	0	0	1554	0
Flt Permitted				0.950				0.976				
Satd. Flow (perm)	0	0	0	1770	1827	0	0	1818	0	0	1554	0
Link Speed (mph)		25			25			30			25	
Link Distance (ft)		201			153			74			347	
Travel Time (s)		5.5			4.2			1.7			9.5	
Confl. Peds. (#/hr)				19		49	37					37
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)											0	
Adj. Flow (vph)	0	0	0	185	270	39	178	185	0	0	29	34
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	185	309	0	0	363	0	0	63	0
Sign Control		Stop			Stop			Free			Free	

intersection Summary

Area Type: Other Control Type: Unsignalized

Intersection Capacity Utilization 47.1%

Analysis Period (min) 15

	٠	-	*	•	-	4	4	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				1	ĵ»			सी			1}→	
Volume (veh/h)	0	0	0	170	248	36	164	170	0	0	27	31
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	185	270	39	178	185	0	0	29	34
Pedestrians		37						19			49	
Lane Width (ft)		0.0						12.0			12.0	
Walking Speed (ft/s)		4.0						4.0			4.0	
Percent Blockage		0						2			4	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	847	624	102	606	641	234	100			185		
vC1, stage 1 conf vol	10.11											
vC2, stage 2 conf vol												
vCu, unblocked vol	847	624	102	606	641	234	100			185		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)		0.0			0.0							
tF(s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	49	22	95	88			100		
cM capacity (veh/h)	85	354	938	365	346	772	1493			1390		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	50.00	·	1, PY 1	¥4				
Volume Total	185	309	363	63								
Volume Left	185	0	178	0								
Volume Right	0	39	0	34								
cSH	365	372	1493	1700								
Volume to Capacity	0.51	0.83	0.12	0.04								
Queue Length 95th (ft)	68	188	10	0								
Control Delay (s)	24.5	47.7	4.3	0.0								
Lane LOS	C	Е	A	0.0								
Approach Delay (s)	39.0		4.3	0.0								
Approach LOS	E		110	0,0								
Intersection Summary	Hiji da		TE, TA			- A - A - A - A - A - A - A - A - A - A						S Alle
Average Delay			22.7									
Intersection Capacity Utiliza	ation		47.1%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	•	†	~	-	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	innii
Lane Configurations	*	7	^			4	
Volume (vph)	60	111	348	0	0	449	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt		0.850					
Flt Protected	0.950						
Satd. Flow (prot)	1593	1425	1676	0	0	1676	
FIt Permitted	0.950						
Satd. Flow (perm)	1593	1425	1676	0	0	1676	
Link Speed (mph)	25		25			30	
Link Distance (ft)	255		252			301	
Travel Time (s)	7.0		6.9			6.8	
Confl. Peds. (#/hr)	14	24					
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Parking (#/hr)	0	0	0			0	
Adj. Flow (vph)	65	121	378	0	0	488	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	65	121	378	0	0	488	
Sign Control	Stop		Free			Free	
Intersection Summary					la ju		
	Other						
Control Type: Unsignalized							
Intersection Canacity Litiliza				IC	المراا	of Service	Δ

Intersection Capacity Utilization 39.1%

ICU Level of Service A

	•	*	†	-	\	\downarrow
Movement	Wal	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	7	^			
Volume (veh/h)	60	111	348	0	0	449
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	65	121	378	0	0	488
Pedestrians			14			24
Lane Width (ft)			12.0			12.0
Walking Speed (ft/s)			4.0			4.0
Percent Blockage			1			2
Right turn flare (veh)			•			-
Median type			None			None
Median storage veh)			110110			110110
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	880	402			378	
vC1, stage 1 conf vol	000	102			010	
vC2, stage 2 conf vol						
vCu, unblocked vol	880	402			378	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0.1	0.2				
tF (s)	3.5	3.3			2.2	
p0 queue free %	79	81			100	
cM capacity (veh/h)	314	635			1180	
			1000000	OK MET 18	1100	
Direction, Lane #	WB 1	WB 2	NB 1	SB 1		
Volume Total	65	121	378	488		
Volume Left	65	0	0	0		
Volume Right	0	121	0	0		
cSH	314	635	1700	1700		
Volume to Capacity	0.21	0.19	0.22	0.29		
Queue Length 95th (ft)	19	17	0	0		
Control Delay (s)	19.5	12.0	0.0	0.0		
Lane LOS	С	В				
Approach Delay (s)	14.6		0.0	0.0		
Approach LOS	В					
Intersection Summary			157	465		i i
Average Delay			2.6			
Intersection Capacity Utiliza	ation		39.1%	IC	U Level	of Service
Analysis Period (min)			15			

	•	•	†	1	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations			Þ			4
Volume (vph)	0	0	258	151	7	152
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt			0.950			
FIt Protected						0.998
Satd. Flow (prot)	0	0	1770	0	0	1859
FIt Permitted						0.998
Satd. Flow (perm)	0	0	1770	0	0	1859
Link Speed (mph)	30		25			30
Link Distance (ft)	119		188			74
Travel Time (s)	2.7		5.1			1.7
Confl. Peds. (#/hr)				8		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	280	164	8	165
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	444	0	0	173
Sign Control	Stop		Free			Free

Intersection Summary

Area Type:

Other

Control Type: Unsignalized

Intersection Capacity Utilization 26.4%

Analysis Period (min) 15

	•	•	†	1	-	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations			₽			4	
Volume (veh/h)	0	0	258	151	7	152	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	280	164	8	165	
Pedestrians	8						
Lane Width (ft)	0.0						
Walking Speed (ft/s)	4.0						
Percent Blockage	0						
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	551	370			453		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	551	370			453		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	100			99		
cM capacity (veh/h)	492	675			1108		
Direction, Lane # Volume Total	NB 1 445	SB 1				- 171 - 1 1 1 1	_ 0
Volume Left	0	8					
Volume Right	164 1700	0					
cSH		1108					
Volume to Capacity	0.26	0.01					
Queue Length 95th (ft)	0	1					
Control Delay (s)	0.0	0.4					
Lane LOS	0.0	A					
Approach Delay (s)	0.0	0.4					
Approach LOS							
Intersection Summary					T Sy.		100
Average Delay			0.1				
Intersection Capacity Utilization	ation		26.4%	IC	U Level	of Service	
Analysis Period (min)			15				

	۶	→	\rightarrow	•	4	•	4	†	-	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				T	ĵ»			4			1>	
Volume (vph)	0	0	0	105	195	14	156	110	0	0	47	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.990						0.952	
Flt Protected				0.950				0.972				
Satd. Flow (prot)	0	0	0	1770	1844	0	0	1811	0	0	1596	0
Flt Permitted				0.950				0.972				
Satd. Flow (perm)	0	0	0	1770	1844	0	0	1811	0	0	1596	0
Link Speed (mph)		25			25			30			25	
Link Distance (ft)		241			153			74			347	
Travel Time (s)		6.6			4.2			1.7			9.5	
Confl. Peds. (#/hr)				12		40	14		9			14
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)											0	
Adj. Flow (vph)	0	0	0	114	212	15	170	120	0	0	51	28
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	114	227	0	0	290	0	0	79	0
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 40.6%

Analysis Period (min) 15

	٦	→	*	1	←	*	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ħ	ĵ»			सी			₽	
Volume (veh/h)	0	0	0	105	195	14	156	110	0	0	47	26
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	114	212	15	170	120	0	0	51	28
Pedestrians		14			9			12			40	
Lane Width (ft)		0.0			12.0			12.0			12.0	
Walking Speed (ft/s)		4.0			4.0			4.0			4.0	
Percent Blockage		0			1			1			3	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	699	547	91	545	561	169	93			129		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	699	547	91	545	561	169	93			129		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	72	45	98	89			100		
cM capacity (veh/h)	174	391	957	401	384	840	1501			1446		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	14.14	MIN F	1517			19	115,5	j jes
Volume Total	114	227	289	79								
Volume Left	114	0	170	0								
Volume Right	0	15	0	28								
cSH	401	399	1501	1700								
Volume to Capacity	0.28	0.57	0.11	0.05	5							
Queue Length 95th (ft)	29	86	10	0								
Control Delay (s)	17.5	25.3	4.9	0.0								
Lane LOS	С	D	Α									
Approach Delay (s)	22.7		4.9	0.0								
Approach LOS	С											
Intersection Summary	-AID-AID	4 - 1	al 5 134	17 18	J. A.	13/15		n is the			A. L	4
Average Delay			12.9									
Intersection Capacity Utiliza	ation		40.6%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

Intersection Capacity Utilization 53.0%

Analysis Period (min) 15

	•	*	†	-	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	*			^
Volume (vph)	225	291	321	0	0	634
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850				
Fit Protected	0.950					
Satd. Flow (prot)	1593	1425	1676	0	0	1676
Flt Permitted	0.950					
Satd. Flow (perm)	1593	1425	1676	0	0	1676
Link Speed (mph)	25		25			30
Link Distance (ft)	255		252			301
Travel Time (s)	7.0		6.9			6.8
Confl. Peds. (#/hr)	14	24				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)	0	0	0			0
Adj. Flow (vph)	245	316	349	0	0	689
Shared Lane Traffic (%)						
Lane Group Flow (vph)	245	316	349	0	0	689
Sign Control	Stop		Free			Free
Intersection Summary				a train		
Area Type:	Other					
Control Type: Unsignalized						

	•	•	†	1	-	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT	TAKE MENTANG	
ane Configurations	*	77	^			^		
/olume (veh/h)	225	291	321	0	0	634		
ign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
lourly flow rate (vph)	245	316	349	0	0	689		
edestrians	2.0		14			24		
ane Width (ft)			12.0			12.0		
Valking Speed (ft/s)			4.0			4.0		
Percent Blockage			1.0			2		
Right turn flare (veh)								
Median type			None			None		
Median storage veh)			140116			140110		
Jpstream signal (ft)								
X, platoon unblocked								
C, conflicting volume	1052	373			349			
C1, stage 1 conf vol	1032	3/3			349			
C2, stage 2 conf vol								
Cu, unblocked vol	1052	373			349			
C, single (s)	6.4	6.2			4.1			
C, 2 stage (s)	0.4	0.2			4.1			
	3.5	3.3			2.0			
F (s)					2.2			
00 queue free %	1	52			100			
M capacity (veh/h)	248	660			1210			
irection, Lane #	WB 1	WB 2	NB 1	SB 1	70			v i i
olume Total	245	316	349	689				
/olume Left	245	0	0	0				
olume Right	0	316	0	0				
SH	248	660	1700	1700				
olume to Capacity	0.99	0.48	0.21	0.41				
Queue Length 95th (ft)	234	65	0	0				
Control Delay (s)	96.8	15.4	0.0	0.0				
ane LOS	F	С						
Approach Delay (s)	50.9		0.0	0.0				
pproach LOS	F							
tersection Summary			in River	Hall	/h 2	Welling.	Chilly nyther	
erage Delay			17.8					
ntersection Capacity Utiliza	tion		53.0%	IC	U Level	of Service		Α
Analysis Period (min)			15					

	•	4	†	-	-	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations			}			4	
Volume (vph)	0	0	360	177	14	218	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt			0.956				
Flt Protected						0.997	
Satd. Flow (prot)	0	0	1781	0	0	1857	
Flt Permitted						0.997	
Satd. Flow (perm)	0	0	1781	0	0	1857	
Link Speed (mph)	30		25			30	
Link Distance (ft)	119		188			74	
Travel Time (s)	2.7		5.1			1.7	
Confl. Peds. (#/hr)				8			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	0	391	192	15	237	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	583	0	0	252	
Sign Control	Stop		Free			Free	
Intersection Summary		-1846			HA.	J. Car	1
	Other						
Control Type: Unsignalized							
Intersection Capacity Utiliza	ation 33.3%			IC	U Level	of Service	A
Analysis Period (min) 15							

		a5	

	•	•	†	-	-	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations			1>			र्स	
Volume (veh/h)	0	0	360	177	14	218	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	391	192	15	237	
Pedestrians	8						
Lane Width (ft)	0.0						
Walking Speed (ft/s)	4.0						
Percent Blockage	0						
Right turn flare (veh)	J						
Median type			None			None	
Median storage veh)			140116			110116	
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	763	496			592		
vC1, stage 1 conf vol	703	450			392		
C2, stage 2 conf vol							
vCu, unblocked vol	763	496			592		
C, single (s)	6.4	6.2			4.1		
	0.4	0.2			4.1		
C, 2 stage (s)	2.5	3.3			2.2		
F (s)	3.5				2.2		
p0 queue free %	100	100			98		
cM capacity (veh/h)	367	574			984		
Direction, Lane #	NB 1	SB 1		12			
/olume Total	584	252					
Volume Left	0	15					
Volume Right	192	0					
SH	1700	984					
Volume to Capacity	0.34	0.02					
Queue Length 95th (ft)	0	1					
Control Delay (s)	0.0	0.7					
ane LOS		Α					
Approach Delay (s) Approach LOS	0.0	0.7					
	1 T P - 7	(10 N		T 50.	115 0 1		THE RESERVE AND ADDRESS OF THE PARTY OF THE
ntersection Summary			0.2			No.	والمناورة والمراوية والمناوية والمناوية والمناوية
Average Delay	4!		0.2	10		10	
Intersection Capacity Utiliza	tion		33.3%	IC	U Level o	t Service	A
Analysis Period (min)			15				

	۶	-	•	•	←	*	1	†	-	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				1	Ъ			4			- ↑	
Volume (vph)	0	0	0	182	267	39	176	191	0	0	37	43
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.981						0.927	
Flt Protected				0.950				0.977				
Satd. Flow (prot)	0	0	0	1770	1827	0	0	1820	0	0	1554	0
Flt Permitted				0.950				0.977				
Satd. Flow (perm)	0	0	0	1770	1827	0	0	1820	0	0	1554	0
Link Speed (mph)		25			25			30			25	
Link Distance (ft)		241			153			74			347	
Travel Time (s)		6.6			4.2			1.7			9.5	
Confl. Peds. (#/hr)				5		11	38		8			2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)											0	
Adj. Flow (vph)	0	0	0	198	290	42	191	208	0	0	40	47
Shared Lane Traffic (%)		81		10,00			11.8		100			
Lane Group Flow (vph)	0	0	0	198	332	0	0	399	0	0	87	0
Sign Control	1, 5	Stop			Stop	wř.		Free			Free	

Intersection Summary

Area Type:

Other

Control Type: Unsignalized

Intersection Capacity Utilization 49.7%

ICU Level of Service A

*	-	•	1	-	*	•	†	1	-	↓	1
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
			N.	Ţ»			4			1>	
0	0	0	182	267	39	176	191	0	0	37	43
	Stop			Stop			Free			Free	
	0%			0%			0%			0%	
0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
0	0	0	198	290	42	191	208	0	0	40	47
	38			8			5			11	
	0.0						12.0				
	4.0										
				•						·	
							None			None	
							110110			110.10	
890	700	107	667	723	227	125			216		
000	100	101	001	120	241	120			210		
890	700	107	667	723	227	125			216		
	0.0	0.2		0.0	Ų.L				4.1		
3.5	4.0	33	3.5	4 0	33	22			22		
				001	000	1102	Name -		1010		
			Children Mill			-				2.0	
			_								
			0.0								
	F										
		4.4	0.0								
F											
than to	. 134	NEW WE	pra, en	27.6		1917	A 9 3		11. 4		
ion		49.7%	IC	U Level o	of Service			Α			
		15									
	0 0.92	890 700 890 700 890 700 890 700 7.1 6.5 3.5 4.0 100 100 33 314 WB 1 WB 2 198 333 198 0 0 42 330 330 0.60 1.01 92 283 31.0 87.8 D F 66.6 F	BL BT EBR 0 0 0 0 Stop 0% 0.92 0.92 0.92 0 0 0 38 0.0 4.0 0 0 890 700 107 7.1 6.5 6.2 3.5 4.0 3.3 100 100 100 33 314 944 WB 1 WB 2 NB 1 198 333 399 198 0 191 0 42 0 330 330 1462 0.60 1.01 0.13 92 283 11 31.0 87.8 4.4 D F A 66.6 4.4 F	BL EBT EBR WBL 0 0 0 182 Stop 0% 0.92 0.92 0.92 0.92 0 0 0 198 38 0.0 4.0 0 0 890 700 107 667 7.1 6.5 6.2 7.1 3.5 4.0 3.3 3.5 100 100 100 40 33 314 944 330 WB 1 WB 2 NB 1 SB 1 198 333 399 87 198 0 191 0 0 42 0 47 330 330 1462 1700 0.60 1.01 0.13 0.05 92 283 11 0 31.0 87.8 4.4 0.0 D F A 66.6 4.4 0.0 F	BBL BBT BBR WBL WBT 0 0 0 182 267 Stop Stop 0% 0% 0.92 0.92 0.92 0.92 0.92 0 0 0 198 290 38 8 0.0 12.0 4.0 4.0 0 1 890 700 107 667 723 7.1 6.5 6.2 7.1 6.5 3.5 4.0 3.3 3.5 4.0 100 100 100 40 5 33 314 944 330 304 WB 1 WB 2 NB 1 SB 1 198 333 399 87 198 0 191 0 0 42 0 47 330 330 1462 1700 0.60 1.01 0.13 0.05 92 283 11 0 31.0 87.8 4.4 0.0 D F A 66.6 4.4 0.0 F	BL EBT EBR WBL WBT WBR 0 0 0 182 267 39 Stop 0% 00% 0.92 0.92 0.92 0.92 0.92 0.92 0 0 0 198 290 42 38 8 0.0 12.0 4.0 4.0 0 1 890 700 107 667 723 227 7.1 6.5 6.2 7.1 6.5 6.2 3.5 4.0 3.3 3.5 4.0 3.3 100 100 100 40 5 95 33 314 944 330 304 800 WB 1 WB 2 NB 1 SB 1 198 333 399 87 198 0 191 0 0 42 0 47 330 330 1462 1700 0.60 1.01 0.13 0.05 92 283 11 0 31.0 87.8 4.4 0.0 D F A 66.6 4.4 0.0 F	EBL EBT EBR WBL WBT WBR NBL 0 0 0 182 267 39 176 Stop 0% 0% 0% 0.92 1.25 7.1 6.5 6.2 4.1 1.25 7.1 6.5 6.2 4.1 1.25	BBL BBT BBR WBL WBT WBR NBL NBT	BBL BBT BBR WBL WBT WBR NBL NBT NBR	BEL EBT EBR WBL WBT WBR NBL NBT NBR SBL	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT 0 0 0 182 267 39 176 191 0 0 37 Stop Stop Free Free 0% 0% 0% 0% 0% 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

	۶	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7		7	ħ		7		†			†	
Volume (vph)	111	0	60	105	0	14	0	110	0	0	47	0
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850						
Flt Protected	0.950			0.950								
Satd. Flow (prot)	1770	0	1583	1770	0	1583	0	1863	0	0	1676	0
Flt Permitted	0.950			0.950								
Satd. Flow (perm)	1770	0	1583	1770	0	1583	0	1863	0	0	1676	0
Link Speed (mph)		25			25			30			25	
Link Distance (ft)		241			153			74			347	
Travel Time (s)		6.6			4.2			1.7			9.5	
Confl. Peds. (#/hr)				12		40	14		9			14
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)											0	
Adj. Flow (vph)	121	0	65	114	0	15	0	120	0	0	51	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	121	0	65	114	0	15	0	120	0	0	51	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												

Area Type:

Control Type: Unsignalized

Intersection Capacity Utilization 34.8%

Other

	۶	→	•	•	←	•	1	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		7	ሻ		7		↑			↑	
Volume (veh/h)	111	0	60	105	0	14	0	110	0	0	47	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	121	0	65	114	0	15	0	120	0	0	51	0
Pedestrians		14			9			12			40	
Lane Width (ft)		12.0			12.0			12.0			12.0	
Walking Speed (ft/s)		4.0			4.0			4.0			4.0	
Percent Blockage		1			1			1			3	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	240	194	77	257	194	169	65			129		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	240	194	77	257	194	169	65			129		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	82	100	93	82	100	98	100			100		
cM capacity (veh/h)	660	688	963	628	688	840	1519			1446		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	121	65	114	15	120	51						
Volume Left	121	0	114	0	0	0						
Volume Right	0	65	0	15	0	0						
cSH	660	963	628	840	1700	1700						
Volume to Capacity	0.18	0.07	0.18	0.02	0.07	0.03						
Queue Length 95th (ft)	17	5	16	1	0	0						
Control Delay (s)	11.7	9.0	12.0	9.4	0.0	0.0						
Lane LOS	В	А	В	А								
Approach Delay (s)	10.7		11.7		0.0	0.0						
Approach LOS	В		В									
Intersection Summary												
Average Delay			7.2									
Intersection Capacity Utilizati	on		34.8%	IC	:U Level o	of Service			Α			
Analysis Period (min)			15									
, ,												

	•	→	\rightarrow	•	←	•	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ		7	7		7		^			†	
Volume (vph)	291	0	225	182	0	39	0	191	0	0	37	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850						
Flt Protected	0.950			0.950								
Satd. Flow (prot)	1770	0	1583	1770	0	1583	0	1863	0	0	1676	0
Flt Permitted	0.950			0.950								
Satd. Flow (perm)	1770	0	1583	1770	0	1583	0	1863	0	0	1676	0
Link Speed (mph)		25			25			30			25	
Link Distance (ft)		241			153			74			347	
Travel Time (s)		6.6			4.2			1.7			9.5	
Confl. Peds. (#/hr)				5		11	38		8			2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)											0	
Adj. Flow (vph)	316	0	245	198	0	42	0	208	0	0	40	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	316	0	245	198	0	42	0	208	0	0	40	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 43.5%

ICU Level of Service A

	۶	→	•	•	←	4	1	†	<i>></i>	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7		7	ሻ		7		↑			↑	
Volume (veh/h)	291	0	225	182	0	39	0	191	0	0	37	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	316	0	245	198	0	42	0	208	0	0	40	0
Pedestrians		38			8			5			11	
Lane Width (ft)		12.0			12.0			12.0			12.0	
Walking Speed (ft/s)		4.0			4.0			4.0			4.0	
Percent Blockage		3			1			0			1	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	339	294	83	505	294	227	78			216		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	339	294	83	505	294	227	78			216		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	42	100	74	42	100	95	100			100		
cM capacity (veh/h)	542	594	941	339	594	800	1472			1345		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	316	245	198	42	208	40						
Volume Left	316		198	0								
		0			0	0						
Volume Right cSH	0 542	245	0 339	42 800	0 1700	1700						
		941			0.12	0.02						
Volume to Capacity	0.58 93	0.26	0.58 88	0.05		0.02						
Queue Length 95th (ft)		26	29.4	4	0.0							
Control Delay (s)	20.5	10.2		9.8	0.0	0.0						
Lane LOS	C	В	D	A	0.0	0.0						
Approach LOS	16.0		26.0		0.0	0.0						
Approach LOS	С		D									
Intersection Summary												
Average Delay			14.5									
Intersection Capacity Utilization	n		43.5%	IC	CU Level of	of Service			Α			
Analysis Period (min)			15									